Luogu P4709 信息传递 (群论、生成函数、多项式指数函数)

本文主要是介绍Luogu P4709 信息传递 (群论、生成函数、多项式指数函数),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题意:

1449777-20190727084009870-1253428146.png

1449777-20190727084020059-80240764.png

题解: 这道题我思路大方向是正确的,但是生成函数推错导致一直WA,看了标程才改对……

首先一个长为\(m\)的轮换的\(n\)次幂会分裂成\(\gcd(n,m)\)个长为\(\frac{m}{\gcd(n,m)}\)的轮换
所以合并的时候相当于对于一个长度\(l\)若存在一个\(m\)使得\(\frac{m}{\gcd(n,m)}=l\)\(\gcd(n,m)\)个长度为\(l\)的轮换可以合并

显然不同长度的轮换是互不影响的,那么我们可以分开每种长度计算
就相当于对于一个长度为\(l\)的有标号的轮换,要把它们划分成若干无标号集合,每个集合大小都在给定的集合\(S\)内,并且每个集合有权值(合并的方案数),一种划分方案的权值为所有集合权值之积,求所有划分方案权值总和
那么显然这个东西的EGF就等于\(\exp(\sum_{i\in S} \frac{w_i}{i!})\), \(w_i\)为权值

如何求\(w_i\)? 在这里我出了问题
正确的答案是,假设\(k\)个长度为\(l\)的轮换合并,方案数为\(l^{k-1}(k-1)!\), 也就是\(\frac{l^kk!}{lk}\).
这大概是因为,假设我们定住第一个轮换的第一个元素的位置,那么其余每个轮换自身内部的顺序都可以改变,这样是\(l^{k-1}\)种;这些轮换之间的顺序也可以改变,这样是\((k-1)!\)种。

代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#include<vector>
#define llong long long
using namespace std;inline int read()
{int x=0; bool f=1; char c=getchar();for(;!isdigit(c);c=getchar()) if(c=='-') f=0;for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');if(f) return x;return -x;
}const int N = 1<<19;
const int LGN = 19;
const int P = 998244353;
const int G = 3;llong quickpow(llong x,llong y)
{llong cur = x,ret = 1ll;for(int i=0; y; i++){if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}cur = cur*cur%P;}return ret;
}
llong mulinv(llong x) {return quickpow(x,P-2);}namespace FFT
{llong tmp1[N+3],tmp2[N+3],tmp3[N+3],tmp4[N+3],tmp5[N+3],tmp6[N+3],tmp7[N+3],tmp8[N+3],tmp9[N+3],tmp10[N+3];llong tst1[N+3],tst2[N+3],tst3[N+3];llong sexp[N+3];int fftid[N+3];int getdgr(int n) {int ret = 1; while(ret<=n) ret<<=1; return ret;}void init_fftid(int dgr){int len = 0; for(int i=1; i<=LGN; i++) {if((1<<i)==dgr) {len = i; break;}}fftid[0] = 0; for(int i=1; i<dgr; i++) fftid[i] = (fftid[i>>1]>>1)|((i&1)<<(len-1));}void ntt(int dgr,int coe,llong poly[],llong ret[]){init_fftid(dgr);if(poly==ret) {for(int i=0; i<dgr; i++) {if(i<fftid[i]) swap(ret[i],ret[fftid[i]]);}}else {for(int i=0; i<dgr; i++) ret[i] = poly[fftid[i]];}for(int i=1; i<=(dgr>>1); i<<=1){llong tmp = quickpow(G,(P-1)/(i<<1));if(coe==-1) {tmp = mulinv(tmp);}sexp[0] = 1ll; for(int j=1; j<i; j++) sexp[j] = sexp[j-1]*tmp%P;for(int j=0; j<dgr; j+=(i<<1)){for(llong *k=ret+j,*kk=sexp; k<ret+i+j; k++,kk++){llong y = k[i]*(*kk)%P;k[i] = (*k)-y<0 ? (*k)-y+P : (*k)-y;(*k) = (*k)+y>=P ? (*k)+y-P : (*k)+y;}}}if(coe==-1){llong tmp = mulinv(dgr);for(int i=0; i<dgr; i++) ret[i] = ret[i]*tmp%P;}}void polymul(int dgr,llong poly1[],llong poly2[],llong ret[]){ntt((dgr<<1),1,poly1,tmp1); ntt((dgr<<1),1,poly2,tmp2);for(int i=0; i<(dgr<<1); i++) ret[i] = tmp1[i]*tmp2[i]%P;ntt((dgr<<1),-1,ret,ret);}void polyinv(int dgr,llong poly[],llong ret[]){for(int i=0; i<(dgr<<1); i++) ret[i] = tmp3[i] = tmp4[i] = tmp5[i] = 0ll;ret[0] = mulinv(poly[0]);for(int i=1; i<=(dgr>>1); i<<=1){for(int j=0; j<(i<<1); j++) tmp3[j] = poly[j];ntt((i<<2),1,tmp3,tmp4); ntt((i<<2),1,ret,tmp5);for(int j=0; j<(i<<2); j++) tmp3[j] = tmp4[j]*tmp5[j]%P*tmp5[j]%P;ntt((i<<2),-1,tmp3,tmp4);for(int j=0; j<(i<<1); j++) ret[j] = (ret[j]+ret[j]-tmp4[j]+P)%P;}}void polyder(int dgr,llong poly[],llong ret[]){for(int i=0; i<dgr-1; i++) ret[i] = poly[i+1]*(i+1)%P;ret[dgr-1] = 0ll;}void polyint(int dgr,llong poly[],llong ret[]){for(int i=1; i<dgr; i++) ret[i] = poly[i-1]*mulinv(i)%P;ret[0] = 0ll;}void polyln(int dgr,llong poly[],llong ret[]){for(int i=0; i<(dgr<<1); i++) ret[i] = tmp6[i] = tmp7[i] = tmp8[i] = 0ll;polyder(dgr,poly,tmp6);polyinv(dgr,poly,tmp7);polymul(dgr,tmp6,tmp7,tmp8);polyint(dgr,tmp8,ret);}void polyexp(int dgr,llong poly[],llong ret[]){for(int i=0; i<(dgr<<1); i++) ret[i] = tmp9[i] = tmp10[i] = 0ll;ret[0] = 1ll;for(int i=1; i<=(dgr>>1); i<<=1){polyln((i<<1),ret,tmp9);for(int j=0; j<(i<<1); j++) tmp9[j] = (-tmp9[j]+poly[j]+P)%P; tmp9[0]++;polymul((i<<2),ret,tmp9,tmp10);for(int j=0; j<(i<<1); j++) ret[j] = tmp10[j];}}
}
int permu[N+3];
int a[N+3];
int dgr[N+3];
bool vis[N+3];
vector<int> s[N+3];
llong f[N+3],expf[N+3];
llong fact[N+3];
int n;int gcd(int x,int y) {return y==0?x:gcd(y,x%y);}int main()
{fact[0] = 1ll; for(int i=1; i<=N; i++) fact[i] = fact[i-1]*i%P;scanf("%d",&n);for(int i=1; i<=n; i++) scanf("%d",&permu[i]);for(int i=1; i<=n; i++){if(vis[i]) continue;int len = 1; vis[i] = true;for(int j=permu[i]; j!=i; j=permu[j]){len++;vis[j] = true;}a[len]++;}for(int i=1; i<=n; i++){int g = gcd(i,n),l = i/gcd(i,n);s[l].push_back(g);}llong ans = 1ll;for(int i=1; i<=n; i++){if(a[i]==0) continue;int dgr = FFT::getdgr(a[i]);for(int j=0; j<s[i].size(); j++){if(s[i][j]<dgr){f[s[i][j]] = (f[s[i][j]]+mulinv(s[i][j])*quickpow(i,s[i][j]-1))%P;}}FFT::polyexp(dgr,f,expf);ans = ans*expf[a[i]]%P*fact[a[i]]%P;for(int j=0; j<(dgr<<1); j++) f[j] = expf[j] = 0ll;}printf("%lld\n",ans);return 0;
}

这篇关于Luogu P4709 信息传递 (群论、生成函数、多项式指数函数)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711826

相关文章

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

python如何生成指定文件大小

《python如何生成指定文件大小》:本文主要介绍python如何生成指定文件大小的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python生成指定文件大小方法一(速度最快)方法二(中等速度)方法三(生成可读文本文件–较慢)方法四(使用内存映射高效生成

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使