【零基础强化学习】100行代码教你实现基于DQN的gym登山车

2024-02-15 14:40

本文主要是介绍【零基础强化学习】100行代码教你实现基于DQN的gym登山车,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于DQN的gym登山车🤔

  • 写在前面
  • show me code, no bb
  • 界面展示
  • 写在最后
    • 谢谢点赞交流!(❁´◡`❁)

更多代码: gitee主页:https://gitee.com/GZHzzz
博客主页: CSDN:https://blog.csdn.net/gzhzzaa

写在前面

作为一个新手,写这个强化学习-基础知识专栏是想和大家分享一下自己强化学习的学习历程,希望大家互相交流一起进步。希望自己在2022年能保证把强化学习基础概念都过一遍,主要是成体系介绍强化学习的基础知识,而且在gitee收集了强化学习经典论文和基于pytorch的经典模型 ,大家一起互相学习啊!可能会有很多错漏,希望大家批评指正!不要高估一年的努力,也不要低估十年的积累,与君共勉!

show me code, no bb

#这是一堆初始化
import gym
import random
import torch
import torch.nn as nn
from torch.utils.data import Dataset
import os
#env = gym.make('CartPole-v0')
env = gym.make('MountainCar-v0') #action = (0,1,2) = (left, no_act, right)
#env = gym.make('Hopper-v3')
print(env.observation_space)
#print(env.action_space)
#简单的线性模型
def mkdir(path):folder = os.path.exists(path)if not folder:                   os.makedirs(path)
def GetModel():#In features:2(state) ,out:3 action qreturn nn.Sequential(nn.Linear(2, 16), nn.LeakyReLU(inplace=True), nn.Linear(16,24),nn.LeakyReLU(inplace=True), nn.Linear(24,3))
#创建数据集
class RLDataset(Dataset):def __init__(self, samples, transform = None, target_transform = None):#samples = [(s,a,r,s_), ...]self.samples = self.transform(samples)def __getitem__(self, index):#if self.transform is not None:#    img = self.transform(img) return self.samples[index]def __len__(self):return len(self.samples)def transform(self, samples):transSamples = []for (s,a,r,s_) in samples:sT = torch.tensor(s,).to(torch.float32)sT_ = torch.tensor(s_).to(torch.float32)transSamples.append((sT, a, r, sT_))return transSamples#采样环境函数,可以设置随机操作的概率。重点在于reward的设计
def GetSamplesFromEnv(env, model, epoch, max_steps, drop_ratio = 0.8):train_samples = []each_sample = Noneenv.reset()observation_new = Noneobservation_old = Nonemodel.eval()for i_episode in range(epoch):observation_new = env.reset()observation_old = env.reset()for t in range(max_steps):env.render()#print(observation)if random.random() > 1-drop_ratio:action = env.action_space.sample()else:inputT = torch.tensor(observation_new).to(torch.float32)action = torch.argmax(model(inputT)).item()#print(action)observation_new, reward, done, info = env.step(action)#print(reward)#We record samples.if t > 0 :#reward += observation_new[0]#if observation_new[0] > -0.35:#    reward += (observation_new[0] + 0.36)*5if observation_new[0] > -0.2:reward += 0.2elif observation_new[0] > -0.15:reward += 0.5elif observation_new[0] > -0.1:reward += 0.7each_sample = (observation_old, action, reward, observation_new)train_samples.append(each_sample)observation_old = observation_newif done:#失败的采样不打印出来if t != 199:print("Episode finished after {} timesteps".format(t+1))breakreturn train_samples
#训练网络。这里可能gather函数比较绕,还有双网络更新比较费解。忽略掉这些,和正常训练循环一样
#gamma是贝尔曼方程里的衰减因子
def TrainNet(net_target, net_eval, trainloader, criterion, optimizer, device, epoch_total, gamma):running_loss = 0.0iter_times = 0net_target.eval()net_eval.train()for epoch in range(epoch_total + 1):if epoch > 0:           print('epoch %d, loss %.5f' % (epoch, running_loss))running_loss = 0.0if epoch == epoch_total: break        for i, data in enumerate(trainloader, 0):if iter_times % 100 == 0:net_target.load_state_dict(net_eval.state_dict())s,a,r,s_ = dataoptimizer.zero_grad()#output = Q_predicted.q_t0 = net_eval(s)q_t1 = net_target(s_).detach()q_t1 = gamma * (r + torch.max(q_t1,dim=1)[0]).to(torch.float32)loss = criterion(q_t1, torch.gather(q_t0, dim=1, index=a.unsqueeze(1)).squeeze(1))loss.sum().backward()optimizer.step()running_loss += loss.item()iter_times += 1net_target.load_state_dict(net_eval.state_dict())    print('Finished Training')
if __name__ == '__main__':mkdir('model')#最后是一大堆主循环device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")net_target, net_eval = GetModel(), GetModel()criterion = nn.MSELoss()optimizer = torch.optim.Adam(net_eval.parameters(),lr=0.01)train_samples = []goodmodel_idx = 0for i in range(300):drop_ratio = 0.8 - 0.0077*isample_times = 10tmpSample = GetSamplesFromEnv(env,net_eval, sample_times, 200, drop_ratio)train_samples += tmpSample#每次sample的长度就代表了采取的步数,登山车里是越小越好。如果是倒立摆,则是越大越好if len(tmpSample) < sample_times * 160:print("good model!save it!")torch.save(net_eval.state_dict(), "goodmodel" + str(goodmodel_idx) + ".pth")goodmodel_idx += 1#dataset里存着最新的不超过4000的样本if len(train_samples) > 4000:train_samples = train_samples[len(tmpSample):len(train_samples)]trainset = RLDataset(train_samples)trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=0,pin_memory=True)TrainNet(net_target, net_eval, trainloader, criterion, optimizer, device, 10, 0.9)if i%50 == 0:PATH = "model/model"+str(i)+".pth"torch.save(net_eval.state_dict(), PATH)env.close()#这一堆是测试看效果用的#PATH = 'model/model42.pth'#net_eval.load_state_dict(torch.load(PATH))#net_target.load_state_dict(torch.load(PATH))#GetSamplesFromEnv(env,net_eval, 20, 200, 0)
  • 自己过了一遍,代码可直接跑通😎,包括模型保存,模型测试,你懂的!

界面展示

在这里插入图片描述

写在最后

十年磨剑,与君共勉!
更多代码:gitee主页:https://gitee.com/GZHzzz
博客主页:CSDN:https://blog.csdn.net/gzhzzaa

  • Fighting!😎

在这里插入图片描述

while True:Go life

在这里插入图片描述

谢谢点赞交流!(❁´◡`❁)

这篇关于【零基础强化学习】100行代码教你实现基于DQN的gym登山车的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711680

相关文章

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont