【深度学习】S2 数学基础 P3 微积分(上)导数与微分

2024-02-15 10:52

本文主要是介绍【深度学习】S2 数学基础 P3 微积分(上)导数与微分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 圆与微积分
  • 导数与微分
    • 导数的含义
    • 数学定义
    • 常用函数微分
    • 常用微分法则
    • Python 实现

圆与微积分

公元前 2500 年,古希腊数学家阿基米德通过一种名为 “逼近法” 的技巧来估算圆的面积。他采用一个有奇数边的正多边形来外切圆,并用一个有偶数边的正多边形来内接圆。通过计算这两个多边形面积的差值,阿基米德得到了圆面积的一个近似值。

这种方法实际上是一种面积累加的过程,与现代积分学中的思想 —— “将一个区域分割成无数小部分,计算每个小部分的面积,并将这些面积加总以得到整个区域的总面积。” 有着密切的联系。

大约 2000 年后,微分理论被发明。微分学中,优化问题占据了核心地位,这也是深度学习的最终目标之一。正是由于这个原因,微积分成为了深度学习的三大数学基础之一。

而微积分学中的微分学与积分学是相辅相成的,

  • 微分学研究的是函数在某一点处的局部性质;
  • 积分学则关注的是函数在整个区间上的累积性质。

这两者共同构成了微积分学的基本框架,并在解决实际问题中发挥着重要作用。


导数与微分

导数的含义

在深度学习中,导数的含义为:对于模型中的每一个参数,如果我们对这个参数增加或者减少一个无穷小的量,可以观察到损失函数如何相应地快速增加或减少,从而对该参数对模型性能的影响程度有一个度量的标准。

数学定义

导数的数学定义表述为:
f ′ ( x ) = lim ⁡ h → 0 f ( x + h ) − f ( x ) h f'(x)=\lim_{h \to 0} \frac {f(x+h) - f(x)}{h} f(x)=h0limhf(x+h)f(x)

若函数 f f f 在点 a a a 处的导数存在,我们便称函数 f f f a a a 处可微。这里的导数 f ′ ( x ) f'(x) f(x) 表示函数 f ( x ) f(x) f(x) 关于其变量 x x x 的瞬时变化速率。

常用函数微分

以下是一些常用函数的微分操作描述:

  • C ′ = d C d x = 0 C'=\frac {dC} {dx} = 0 C=dxdC=0 C C C 是常数)
  • x n ′ = d x n d x = n x n − 1 {x^n}'=\frac {dx^n} {dx} = nx^{n-1} xn=dxdxn=nxn1
  • e x ′ = d e x d x = e x {e^x}'=\frac {de^x} {dx} = e^x ex=dxdex=ex
  • l n ( x ) ′ = 1 x ln(x)'= \frac {1} {x} ln(x)=x1

常用微分法则

  • 常数相乘法则:
    d d x [ C f ( x ) ] = C d d x f ( x ) \frac d {dx} [Cf(x)] = C \frac d {dx} f(x) dxd[Cf(x)]=Cdxdf(x)
  • 加法法则:
    d d x [ f ( x ) + g ( x ) ] = d d x f ( x ) + d d x g ( x ) \frac d {dx} [f(x)+g(x)] = \frac d {dx} f(x) + \frac d {dx} g(x) dxd[f(x)+g(x)]=dxdf(x)+dxdg(x)
  • 乘法法则:
    d d x [ f ( x ) g ( x ) ] = f ( x ) d d x [ g ( x ) ] + g ( x ) d d x [ f ( x ) ] \frac d {dx} [f(x)g(x)] = f(x) \frac d {dx} [g(x)] + g(x) \frac d {dx} [f(x)] dxd[f(x)g(x)]=f(x)dxd[g(x)]+g(x)dxd[f(x)]
  • 除法法则:
    d d x [ f ( x ) g ( x ) ] = g ( x ) d d x [ f ( x ) ] − f ( x ) d d x [ g ( x ) ] [ g ( x ) ] 2 \frac d {dx} [\frac {f(x)} {g(x)}] = \frac {g(x) \frac d {dx} [f(x)] - f(x) \frac d {dx} [g(x)]} {[g(x)]^2} dxd[g(x)f(x)]=[g(x)]2g(x)dxd[f(x)]f(x)dxd[g(x)]

Python 实现

e . g . e.g. e.g. 定义一个函数 u = f ( x ) = 3 x 2 − 4 x u=f(x)=3x^2-4x u=f(x)=3x24x 以及其导数;

# 函数表达式
def f(x):return 3 * x ** 2 - 4 * x# 导数表达式
def numerical_lim(f, x, h):return (f(x + h) - f(x)) / h

深度学习三大数学基础 - 微积分(上)导数与微分;
下一节博文内容:深度学习数学基础 - 微积分(下),包含偏导数、梯度和链式法则。

2024.2.14

这篇关于【深度学习】S2 数学基础 P3 微积分(上)导数与微分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711191

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置