如何使用Hugging Face:对Transformer和pipelines的介绍

2024-02-15 03:20

本文主要是介绍如何使用Hugging Face:对Transformer和pipelines的介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、transformer介绍

众所周知,transformer模型(如GPT-3、LLaMa和ChatGPT)已经彻底改变了人工智能领域。它们不仅被用于自然语言处理,还被应用于计算机视觉、语音处理和其他任务中。Hugging Face是一个以变换器为核心的Python深度学习库。因此,在我们深入了解其工作原理之前,我们将探讨什么是transformer,以及为什么它们能够支持如此强大的模型。

1.递归神经网络Recurrent Neural Networks (RNNs)

在我们继续之前,有必要简要回顾一下序列模型的基础。对于常规数据而言,前馈神经网络(feedforward neural networks)极为有效,但对于序列型数据(如文本、语音或某些视频资料)来说,理解其上下文信息同样重要。

以这个句子为例:“我们走向了村庄,我哥哥戴着一个黑色的渔夫帽,手里还拿着一个装满水的瓶子。”在建立起这些词汇之间的联系之前,我们无法确定谁在拿瓶子,或是谁在陪伴叙述者,或者他穿着什么。这种联系的建立依赖于循环神经网络(RNNs),它们能够保持当前输入的上下文和历史信息。这里的“输入”可以指一个词或一幕电影画面等,但为了泛化讨论,我会统称之为“数据”。通过构建双向神经网络,我们甚至能够保留未来数据的历史信息。

2.梯度消失Vanishing gradients

传统RNN的一个主要问题是梯度消失。当应用反向传播时,我们使用链式法则将任何层与输出层连接(用于计算偏导数)。随着层数的增加,通常在反向传播过程中梯度会变得很小。

由于链式法则包含导数的乘积,它导致许多相关项的梯度变小或消失。即使你不理解任何微积分,这里的关键点是我们的神经网络学习/训练相当慢,因此我们需要确保有最佳的层数。因此,传统的(通常称为普通的)RNN无法包含太多上下文信息。

正是Sepp Hochreiter识别了这个问题,并提出了一种更好的模型,称为长短期记忆(LSTM)。LSTM由于较少受梯度消失问题的影响,能够包含更多上下文信息,并且与传统RNN相比显示出显著的改进。

3.注意力模型

LSTMs 在90年代中期被发现,对那个时代来说是非凡的成就。后来,它们作为一种更简单、更快速的版本得到了改进,GRU(门控循环单元)被引入。然而,鉴于对更大模型的迫切需求,需要能够承载更多上下文信息的更好的模型。在2014/15年,注意力机制被引入,以解决现有模型的局限性。

注意力模型非常简单直观。它们通过为不同的单词分配不同的权重,来关注文本的相关性。

历史视角:大多数文章将2014年视为transformers的起点,但这个故事实际上可以追溯到更早。早在1960年代,Watson和Nadaraya就提出了一种原始形式的注意力模型。

4.什么是transformers🤗?

使用这种注意力机制,谷歌的研究人员发表了一篇标志性的论文,题为《All You Need》。他们利用注意力机制创建了一种被称为transformers的新模型。虽然在这里无法详细介绍其架构,但我们可以认识到它的强大能力。transformers具有许多优势,比如:

  1. 并行化
  2. 长距离上下文能力
  3. 可扩展性

transformers是一种依赖于“注意力机制”的深度学习架构,它允许解码器以灵活的方式使用输入序列中最相关的部分。transformers被用于大型语言模型,因为它们不像其他神经结构那样需要那么多的训练时间。

二、Hugging Face介绍

正如我们在开头提到的,Hugging Face是一个以transformers为中心的深度学习库。这个表情符号的使用和它的命名可能会让人感到困惑,这是可以理解的。我的第一印象是:“这是一个机器学习库还是一本漫画书?”但是,这个库的强大不容小觑。它在不断发展,并在最近的D轮融资中成功筹集了2.35亿美元。根据2023年Stackoverflow调查,Hugging Face是“其他”类别中第二受欢迎的技术。

那么,让我们来探索一下这个库的魔力

transformers库

Hugging Face围绕transformers库展开。transformers库背后的核心理念是:

1.尽可能简单快速地使用

2.提供接近原始模型性能的最先进模型

1.安装
pip install transformers
2.Hugging Face pipelines

我们调用pipelines来对不同的任务执行推理。这些任务不仅仅局限于自然语言处理,还支持计算机视觉、强化学习和其他领域。

让我们从翻译pipelines开始。首先,我们导入pipelines模块。

from transformers import pipeline

为了使用特定的pipelines,比如英语到汉语,我们需要指定它。

chineseTranslator = pipeline("translation_en_to_zh")

现在我们可以用它把一个给定的英语句子翻译成中文。例如:

# 尼采的名言
nietzscheQuote = "Our vanity is hardest to wound precisely when our pride has just been wounded."# 执行翻译
translated_text = chineseTranslator(nietzscheQuote)print(translated_text)

它将下载模型(大多数模型的大小在 GB 左右) ,由于我们没有指定模型,因此它将默认为 T5。如果我们想指定一个特定的模型,我们可以这样做:

<model> = pipeline(<pipeline name>,model=<model name>
chineseTranslatorSmall = pipeline("translation_en_to_zh",model="t5-small")

这只是冰山一角。截至2023年9月,Hugging Face已经支持超过30种任务,而且这个列表还将继续增长,这要归功于社区的贡献。

这篇关于如何使用Hugging Face:对Transformer和pipelines的介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/710321

相关文章

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali