在Meteor Lake平台上使用NPU进行AI推理加速

2024-02-14 22:36

本文主要是介绍在Meteor Lake平台上使用NPU进行AI推理加速,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在Meteor Lake平台上,英特尔通过神经处理单元 (NPU) 将人工智能直接融入芯片中,实现桌面电脑平台的AI推理功能。神经处理单元 (NPU) 是一种专用人工智能引擎,专为运行持续的人工智能推理工作负载而设计。与即将推出的支持深度人工智能集成的 Windows 版本(预计将于 2024 年夏季推出)搭配,Meteor Lake 可能预示着人工智能 PC 时代的开始,计算机可以利用人工智能来简化我们的计算体验,并使笔记本电脑和台式机的功能呈指数级增长。本文主要介绍在Ubuntu系统上如何启用NPU功能加速AI推理的运算。 

1. 安装ubuntu22.04

按照Ubuntu官网的文档,先安装好Ubuntu 22.04。如果已经安装好,则直接跳过此步骤。https://ubuntu.com/download/desktop

2. 升级内核

参考Intel OpenVINO文档,在Ubuntu里启用NPU功能需要Linux kernel版本在6.6以上。因为Ubuntu 22.04 apt源中没有6.5以上的内核,所以到mainline下载,选择最新的6.7.1。

2.1 下载Kernel 6.7.1

mkdir -p /tmp/mtl
cd /tmp/mtl
wget https://kernel.ubuntu.com/mainline/v6.7.1/amd64/linux-headers-6.7.1-060701-generic_6.7.1-060701.202401201133_amd64.deb
wget https://kernel.ubuntu.com/mainline/v6.7.1/amd64/linux-headers-6.7.1-060701_6.7.1-060701.202401201133_all.deb
wget https://kernel.ubuntu.com/mainline/v6.7.1/amd64/linux-image-unsigned-6.7.1-060701-generic_6.7.1-060701.202401201133_amd64.deb
wget https://kernel.ubuntu.com/mainline/v6.7.1/amd64/linux-modules-6.7.1-060701-generic_6.7.1-060701.202401201133_amd64.deb

2.2 安装6.7.1 kernel packages

sudo dpkg -I *.deb

可能会出现如下的报错,linux-headers-6.7.1-060701-generic_6.7.1-060701.202401201133_amd64.deb安装报错。可忽略,不影响下面的使用。

2.3 重启并验证kernel里NPU的支持

sudo reboot
sudo apt-get install --fix-broken
sudo dmesg | grep vpu

能看到intel_vpu的字样说明内核能识别NPU,在内核中可能是延续以前定义,NPU被叫做VPU。而在OpenVINO中则被叫做NPU。

3. 安装Intel compute-runtime

3.1 添加intel的apt源

wget -qO - https://repositories.intel.com/gpu/intel-graphics.key | \
sudo gpg --dearmor --output /usr/share/keyrings/intel-graphics.gpg
echo "deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/gpu/ubuntu jammy client" | \
sudo tee /etc/apt/sources.list.d/intel-gpu-jammy.list
sudo apt update

执行完上述的命令后,会创建/etc/apt/source.list.d/intel-gpu-jammy.list文件,内容如下:

deb [arch=amd64,i386 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/gpu/ubuntu jammy client

3.2 下载Intel compute-runtime及其它依赖组件

wget https://github.com/intel/intel-graphics-compiler/releases/download/igc-1.0.15770.11/intel-igc-core_1.0.15770.11_amd64.deb
wget https://github.com/intel/intel-graphics-compiler/releases/download/igc-1.0.15770.11/intel-igc-opencl_1.0.15770.11_amd64.deb
wget https://github.com/intel/compute-runtime/releases/download/23.52.28202.14/intel-level-zero-gpu-dbgsym_1.3.28202.14_amd64.ddeb
wget https://github.com/intel/compute-runtime/releases/download/23.52.28202.14/intel-level-zero-gpu_1.3.28202.14_amd64.deb
wget https://github.com/intel/compute-runtime/releases/download/23.52.28202.14/intel-opencl-icd-dbgsym_23.52.28202.14_amd64.ddeb
wget https://github.com/intel/compute-runtime/releases/download/23.52.28202.14/intel-opencl-icd_23.52.28202.14_amd64.deb
wget https://github.com/intel/compute-runtime/releases/download/23.52.28202.14/libigdgmm12_22.3.11_amd64.deb

3.3 安装Intel compute-runtime

sudo dpkg -i *.deb

如果安装出现问题,请按照错误提示安装所需的其它依赖项,例如:

apt install ocl-icd-libopencl1

比较新的硬件最好使用compute-runtime最新的release,但有时最新的有可能无法匹配安装的系统,可以安装能用的最新版本。如果以后硬件平台驱动成熟可以完全按intel官网教程安装驱动。

3.4 验证NPU驱动安装成功

lsmod | grep vpu

显示如下的内容则表示NPU驱动加载成功。

在/lib/firmware/intel/vpu目录下会有MTL NPU firmware的bin文件

ls /lib/firmware/intel/vpu/

此目录里会有如下的bin文件:mtl_vpu_v0.0.bin  vpu_37xx_v0.0.bin

NPU会使用如下的设备文件

ls -l /dev/accel/
crw------- 1 root root 261, 0  2月  7 11:03 accel0

3.5 安装iGPU相关驱动

集成显卡也需要安装compute-runtime才能正常加速,具体可以参考此文档。

sudo apt install -y \intel-opencl-icd intel-level-zero-gpu level-zero \intel-media-va-driver-non-free libmfx1 libmfxgen1 libvpl2 \libegl-mesa0 libegl1-mesa libegl1-mesa-dev libgbm1 libgl1-mesa-dev libgl1-mesa-dri \libglapi-mesa libgles2-mesa-dev libglx-mesa0 libigdgmm12 libxatracker2 mesa-va-drivers \mesa-vdpau-drivers mesa-vulkan-drivers va-driver-all vainfo hwinfo clinfo

3.6 验证iGPU驱动安装成功

成功安装iGPU驱动后系统会存在以下设备文件:

ls /dev/dri/render*
/dev/dri/renderD128

3.7 NPU/iGPU驱动权限设置

如果当前用户要使用npu和gpu加速,必须保证对以上设备节点的访问权限。如果没有正确设置访问权限时访问NPU则会出现以下错误:

设置NPU访问权限一般可以用groupadd添加一个group,这里是mtl_npu,usermod -aG 把用户加到组中,然后chown和chmod赋予设备文件组访问权。

sudo groupadd mtl_npu
sudo usermod -aG mtl_npu xxx # user name for NPU acceleration
groups # 查看group

chown改变文件所属的用户和组:

sudo chown root:mtl_npu /dev/accel/accel0
sudo chmod 660 /dev/accel/accel0

这里的660是赋予文件所属用户和组读写权限,因为当前用户属于mtl_npu组,而mtl_gpu组拥有对此文件的读写权限,所以当前用户拥有此文件的读写访问权限。

4. 安装OpenVINO 2023.3

4.1 下载与安装

访问OpenVINO官网,下载OpenVINO 2023.3.0。按照下面的链接安装OpenVINO:

https://docs.openvino.ai/2023.3/openvino_docs_install_guides_installing_openvino_from_archive_linux.html

安装的过程在OpenVINO的文档里写得非常详细,这里就不再赘述。

4.2 运行sample apps

cd openvino_dir/samples/cpp
./buildsample.sh

会在当前目录下生成openvino_cpp_samples_build目录。在此目录的/intel64/Release/下面有一些可执行的测试程序比如benchmark_app。运行这些程序即可进行sample验证。

cd ./intel64/Release
./benchmark_app

注意事项:目前版本的OpenVINO 2023.3在Python模式下不包含NPU plugin。尝试NPU功能请使用C++ sample applications。Python支持会在后续加入。

欢迎访问作者个人Blog原文:在Meteor Lake平台上使用NPU进行AI推理加速 - HY's Blog

这篇关于在Meteor Lake平台上使用NPU进行AI推理加速的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/709753

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时