CMU和ETH联合研发了一个名为 「敏捷但安全」的新框架,为四足机器人在复杂环境中实现高速运动提供了解决方案

本文主要是介绍CMU和ETH联合研发了一个名为 「敏捷但安全」的新框架,为四足机器人在复杂环境中实现高速运动提供了解决方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在高速机器人运动领域,实现同时兼顾速度和安全一直是一大挑战。但现在,卡内基梅隆大学(CMU)和苏黎世联邦理工学院(ETH)的研究团队带来了突破性进展。他们开发的新型四足机器人算法,不仅能在复杂环境中高速行进,还能巧妙避开障碍,真正做到了「敏捷而安全」。

在这里插入图片描述

论文地址: https://arxiv.org/pdf/2401.17583.pdf

在 ABS 的加持下,机器狗在各种场景下都展现出了惊艳的高速避障能力:

障碍重重的狭窄走廊:

在这里插入图片描述

凌乱的室内场景:
在这里插入图片描述

无论是草地还是户外,静态或动态障碍,机器狗都从容应对:

在这里插入图片描述

遇见婴儿车,机器狗灵巧躲闪开:

在这里插入图片描述

警告牌、箱子、椅子也都不在话下:

在这里插入图片描述

对于突然出现的垫子和人脚,也能轻松绕过:

在这里插入图片描述

机器狗甚至还可以玩老鹰捉小鸡:

在这里插入图片描述

ABS 突破性技术:

RL+ Learning model-free Reach-Avoid value

ABS 采用了一种双策略(Dual Policy)设置,包括一个「敏捷策略」(Agile Policy)和一个「恢复策略」(Recovery Policy)。敏捷策略让机器人在障碍环境中快速移动,而一旦 Reach-Avoid Value Estimation 检测到潜在危险(比如突然出现的婴儿车),恢复策略就会介入,确保机器人安全。

在这里插入图片描述

创新点 1:怎么训练一个敏捷策略 Agile Policy?

敏捷策略的创新之处在于,与以往简单地追踪速度指令不同,它采用目标达成(position trakcing)的形式来最大化机器人的敏捷性。这一策略训练机器人发展出感知运动技能,以在没有碰撞的情况下达到指定目标。通过追求基座高速度的奖励条件,机器人自然学会在避免碰撞的同时实现最大敏捷性。这种方法克服了传统速度追踪(velocity tracking)策略在复杂环境中可能的保守限制,有效提高了机器人在障碍环境中的速度和安全性。Agile Policy 在实机测试中极速达到了 3.1m/s

在这里插入图片描述

创新点 2:学习 Policy-conditioned reach-avoid value

「达防」(Reach-Avoid, RA)值学习的创新之处在于,它采用了无模型的方式学习,与传统的基于模型的可达性分析方法不同,更适合无模型的强化学习策略。此方法不是学习全局 RA 值,而是使其依赖于特定策略,这样可以更好地预测敏捷策略的失败。通过简化的观测集,RA 值网络可以有效地概括并预测安全风险。RA 值被用于指导恢复策略,帮助机器人优化运动以避免碰撞,从而实现在保证安全的同时提高敏捷性的目标。

下图展示了针对特定障碍物集合学习到的 RA(达防)值。随着机器人速度的变化,RA 值的分布景观也相应变化。RA 值的符号合理地指示了敏捷策略的安全性。换句话说,这张图通过不同的 RA 值展示了机器人在不同速度下,面对特定障碍物时的安全风险程度。RA 值的高低变化反映了机器人在不同状态下执行敏捷策略时可能遇到的安全风险。

在这里插入图片描述

创新点 3:用 Reach-Avoid Value 和恢复策略来拯救机器人

恢复策略的创新之处在于,它能使四足机器人快速追踪线速度和角速度指令,作为一种备用保护策略。与敏捷策略不同,恢复策略的观测空间专注于追踪线速度和角速度命令,不需要外部感知信息。恢复策略的任务奖励专注于线性速度追踪、角速度追踪、保持存活和保持姿势,以便平滑切换回敏捷策略。这种策略的训练同样在仿真环境中进行,但有特定的域随机化和课程设置,以更好地适应可能触发恢复策略的状态。这种方法为四足机器人提供了在高速运动中快速应对潜在失败的能力。

在这里插入图片描述

下图展示了当恢复策略在两个特定情况(I 和 II)下被触发时,RA(达防)值景观的可视化展示。这些可视化展示是在 vx(沿 x 轴的速度)与 ωz(绕 z 轴的角速度)平面以及 vx 与 vy(沿 y 轴的速度)平面上进行的。图中显示了搜索前的初始旋转状态(即机器人基座当前的旋转状态)和通过搜索得到的命令。简单来说,这些图表展示了在特定条件下,通过恢复策略搜索得到的最佳运动指令,以及这些指令如何影响 RA 值,从而反映机器人在不同运动状态下的安全性。

鲁棒性测试

作者在「12kg 负载 / 篮球撞击 / 脚踢 / 雪地」的四个场景下测试了 ABS 框架的鲁棒性,机器狗都从容应对:

在这里插入图片描述

这篇关于CMU和ETH联合研发了一个名为 「敏捷但安全」的新框架,为四足机器人在复杂环境中实现高速运动提供了解决方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/709533

相关文章

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Python实现一键PDF转Word(附完整代码及详细步骤)

《Python实现一键PDF转Word(附完整代码及详细步骤)》pdf2docx是一个基于Python的第三方库,专门用于将PDF文件转换为可编辑的Word文档,下面我们就来看看如何通过pdf2doc... 目录引言:为什么需要PDF转Word一、pdf2docx介绍1. pdf2docx 是什么2. by

使用Python实现网页表格转换为markdown

《使用Python实现网页表格转换为markdown》在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,本文将使用Python编写一个网页表格转Markdown工具,需... 在日常工作中,我们经常需要从网页上复制表格数据,并将其转换成Markdown格式,以便在文档、邮件或

Python使用pynput模拟实现键盘自动输入工具

《Python使用pynput模拟实现键盘自动输入工具》在日常办公和软件开发中,我们经常需要处理大量重复的文本输入工作,所以本文就来和大家介绍一款使用Python的PyQt5库结合pynput键盘控制... 目录概述:当自动化遇上可视化功能全景图核心功能矩阵技术栈深度效果展示使用教程四步操作指南核心代码解析

SpringBoot实现文件记录日志及日志文件自动归档和压缩

《SpringBoot实现文件记录日志及日志文件自动归档和压缩》Logback是Java日志框架,通过Logger收集日志并经Appender输出至控制台、文件等,SpringBoot配置logbac... 目录1、什么是Logback2、SpringBoot实现文件记录日志,日志文件自动归档和压缩2.1、

Python实现pdf电子发票信息提取到excel表格

《Python实现pdf电子发票信息提取到excel表格》这篇文章主要为大家详细介绍了如何使用Python实现pdf电子发票信息提取并保存到excel表格,文中的示例代码讲解详细,感兴趣的小伙伴可以跟... 目录应用场景详细代码步骤总结优化应用场景电子发票信息提取系统主要应用于以下场景:企业财务部门:需

基于Python实现智能天气提醒助手

《基于Python实现智能天气提醒助手》这篇文章主要来和大家分享一个实用的Python天气提醒助手开发方案,这个工具可以方便地集成到青龙面板或其他调度框架中使用,有需要的小伙伴可以参考一下... 目录项目概述核心功能技术实现1. 天气API集成2. AI建议生成3. 消息推送环境配置使用方法完整代码项目特点

spring-gateway filters添加自定义过滤器实现流程分析(可插拔)

《spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔)》:本文主要介绍spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔),本文通过实例图... 目录需求背景需求拆解设计流程及作用域逻辑处理代码逻辑需求背景公司要求,通过公司网络代理访问的请求需要做请

使用Python获取JS加载的数据的多种实现方法

《使用Python获取JS加载的数据的多种实现方法》在当今的互联网时代,网页数据的动态加载已经成为一种常见的技术手段,许多现代网站通过JavaScript(JS)动态加载内容,这使得传统的静态网页爬取... 目录引言一、动态 网页与js加载数据的原理二、python爬取JS加载数据的方法(一)分析网络请求1