17.2 OpenGL将片段和样本写入帧缓冲区:多重采样点混合

2024-02-14 18:44

本文主要是介绍17.2 OpenGL将片段和样本写入帧缓冲区:多重采样点混合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

多重采样点混合 Multisample Point Fade

如果启用了多重采样,并且栅格化的片段是由一个点基元产生的,则从方程式 14.2 计算的淡化因子将应用于片段。淡化因子与片段的 alpha 值相乘,得到最终的 alpha 值。淡化因子分别应用于每个片段颜色,并且仅在帧缓冲区中的相应颜色缓冲区具有固定或浮点格式时才会应用。

这篇关于17.2 OpenGL将片段和样本写入帧缓冲区:多重采样点混合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/709289

相关文章

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

Python循环缓冲区的应用详解

《Python循环缓冲区的应用详解》循环缓冲区是一个线性缓冲区,逻辑上被视为一个循环的结构,本文主要为大家介绍了Python中循环缓冲区的相关应用,有兴趣的小伙伴可以了解一下... 目录什么是循环缓冲区循环缓冲区的结构python中的循环缓冲区实现运行循环缓冲区循环缓冲区的优势应用案例Python中的实现库

Linux中的缓冲区和文件系统详解

《Linux中的缓冲区和文件系统详解》:本文主要介绍Linux中的缓冲区和文件系统方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、FILE结构1、fd2、缓冲区二、文件系统1、固态硬盘2、逻辑地址LBA(一)数据块 Data blocks(二)inode表

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

Pandas中多重索引技巧的实现

《Pandas中多重索引技巧的实现》Pandas中的多重索引功能强大,适用于处理多维数据,本文就来介绍一下多重索引技巧,具有一定的参考价值,感兴趣的可以了解一下... 目录1.多重索引概述2.多重索引的基本操作2.1 选择和切片多重索引2.2 交换层级与重设索引3.多重索引的高级操作3.1 多重索引的分组聚

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

多重背包转换成0-1背包

http://acm.hdu.edu.cn/showproblem.php?pid=2191 多重背包特点: 一种物品有C个(既不是固定的1个,也不是无数个) 优化的方法: 运用神奇的二进制,进行物品拆分,转化成01背包 物品拆分,把13个相同的物品分成4组(1,2,4,6) 用这4组可以组成任意一个1~13之间的数! 原理:一个数总可以用2^