【langchain中自定义LLM together为例子】

2024-02-14 10:12

本文主要是介绍【langchain中自定义LLM together为例子】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为了在LangChain中使用TogetherAI,我们必须扩展基本LLM抽象类。

这里有一个创建自定义LLM包装器的示例代码(https://python.langchain.com/docs/modules/model_io/llms/custom_llm),但我们将通过类型验证、异常处理和日志记录使其变得更好。

 

先导入相应的包

import os
import time
import json
import logging
from datetime import datetimeimport together
from langchain.llms.base import LLM
from langchain import PromptTemplate,  LLMChainfrom dotenv import load_dotenv # The dotenv library's load_dotenv function reads a .env file to load environment variables into the process environment. This is a common method to handle configuration settings securely.
# Load env variables
load_dotenv()# Set up logging
logging.basicConfig(level=logging.INFO)

 langchain.lms.base模块通过提供比直接实现_generate方法用户更友好的界面来简化与LLM的交互。 类langchain.lms.base.LLM是LLM的一个抽象基类,这意味着它为其他类提供了一个模板,但并不意味着它自己被实例化。它旨在通过在内部处理LLM的复杂性,为LLM的工作提供一个更简单的界面,允许用户更容易地与这些模型交互。

       __call__方法允许像函数一样调用类,它检查缓存并在给定提示下运行LLM。

class TogetherLLM(LLM):"""Together LLM integration.Attributes:model (str): Model endpoint to use.together_api_key (str): Together API key.temperature (float): Sampling temperature to use.max_tokens (int): Maximum number of tokens to generate."""model: str = "togethercomputer/llama-2-7b-chat"together_api_key: str = os.environ["TOGETHER_API_KEY"]temperature: float = 0.7max_tokens: int = 512@propertydef _llm_type(self) -> str:"""Return type of LLM."""return "together"def _call(self, prompt: str, **kwargs: Any) -> str:"""Call to Together endpoint."""try:logging.info("Making API call to Together endpoint.")return self._make_api_call(prompt)except Exception as e:logging.error(f"Error in TogetherLLM _call: {e}", exc_info=True)raisedef _make_api_call(self, prompt: str) -> str:"""Make the API call to the Together endpoint."""together.api_key = self.together_api_keyoutput = together.Complete.create(prompt,model=self.model,max_tokens=self.max_tokens,temperature=self.temperature,)logging.info("API call successful.")return output['output']['choices'][0]['text']

使用创建的LLM

llm = TogetherLLM(model = model,max_tokens = 256,temperature = 0.8
)# 创建chain
prompt_template = "You are a friendly bot, answer the following question: {question}"
prompt = PromptTemplate(input_variables=["question"], template=prompt_template
)chat = LLMChain(llm=llm, prompt=prompt)# chat
chat("Can AI take over developer jobs?")

参考链接

这篇关于【langchain中自定义LLM together为例子】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/708217

相关文章

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

从入门到精通详解LangChain加载HTML内容的全攻略

《从入门到精通详解LangChain加载HTML内容的全攻略》这篇文章主要为大家详细介绍了如何用LangChain优雅地处理HTML内容,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录引言:当大语言模型遇见html一、HTML加载器为什么需要专门的HTML加载器核心加载器对比表二

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

一文详解Java Stream的sorted自定义排序

《一文详解JavaStream的sorted自定义排序》Javastream中的sorted方法是用于对流中的元素进行排序的方法,它可以接受一个comparator参数,用于指定排序规则,sorte... 目录一、sorted 操作的基础原理二、自定义排序的实现方式1. Comparator 接口的 Lam

如何自定义一个log适配器starter

《如何自定义一个log适配器starter》:本文主要介绍如何自定义一个log适配器starter的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求Starter 项目目录结构pom.XML 配置LogInitializer实现MDCInterceptor

Druid连接池实现自定义数据库密码加解密功能

《Druid连接池实现自定义数据库密码加解密功能》在现代应用开发中,数据安全是至关重要的,本文将介绍如何在​​Druid​​连接池中实现自定义的数据库密码加解密功能,有需要的小伙伴可以参考一下... 目录1. 环境准备2. 密码加密算法的选择3. 自定义 ​​DruidDataSource​​ 的密码解密3

spring-gateway filters添加自定义过滤器实现流程分析(可插拔)

《spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔)》:本文主要介绍spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔),本文通过实例图... 目录需求背景需求拆解设计流程及作用域逻辑处理代码逻辑需求背景公司要求,通过公司网络代理访问的请求需要做请

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到