pytorch花式索引提取topk的张量

2024-02-14 09:52

本文主要是介绍pytorch花式索引提取topk的张量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • pytorch花式索引提取topk的张量
    • 问题设定
    • 代码实现
      • 索引方法
      • gather方法
      • 验证
    • 补充知识
      • expand方法
      • gather方法
      • randint

pytorch花式索引提取topk的张量

问题设定

在这里插入图片描述
或者说,有一个(bs, dim, L)的大张量,索引的index形状为(bs, X),想得到一个(bs, dim, X)的reduced向量。我们在进行topk操作(以减少计算量)的时候经常碰到这种情况。
给出如下两种实现方法,分别使用花式索引(参考informer的代码)以及pytorch的gather方法

代码实现

索引方法

参考https://blog.csdn.net/qq_36560894/article/details/122005808

feature = torch.rand(2,16,4*4)
indices = torch.randint(0,16, (2, 3))
indices
indices_expand = indices.unsqueeze(1).expand(-1, dim, -1).to(torch.long) # (bs, dim, H*W)
indices_expand.shape
indices_expand[:,1,:] # 结果和indices一致,说明在第二个channel上,每个样本的索引是一样的
bs,dim=feature.shape[:2]
bs,dim 
feature_reduce = feature.view(bs, dim, -1)[torch.arange(bs)[:, None, None], torch.arange(dim)[None,:,None], indices_expand]
feature_reduce.shape

在这里插入图片描述
在这里插入图片描述

gather方法

reduce_feature = torch.gather(feature, 2, indices_expand)

验证

两种方法得到的结果完全相同
在这里插入图片描述

补充知识

expand方法

在 PyTorch 中,expand() 方法用于扩展张量的大小。它会在不实际复制数据的情况下,重复张量的元素以填充新的形状。这个方法可以用于广播操作,以便在执行一些需要相同形状的张量之间的数学运算时,使它们具有相同的形状。

下面是使用 expand() 方法的基本用法:

import torch# 创建一个原始张量
x = torch.tensor([[1, 2, 3],[4, 5, 6]])# 使用 expand 扩展张量的大小
expanded_x = x.expand(2, 3, 4)  # 扩展成维度为(2, 3, 4)的张量print(expanded_x)

在上面的例子中,我们首先创建了一个形状为 (2, 3) 的原始张量 x。然后,我们使用 expand() 方法将其扩展成一个维度为 (2, 3, 4) 的新张量 expanded_x,该张量的形状是在原始张量形状的基础上每个维度都扩展了一倍。

需要注意的是,expand() 方法只能用于增加张量的大小,不能减小。另外,扩展后的张量与原始张量共享底层数据,因此在原始张量上进行的任何修改都会反映在扩展后的张量上,反之亦然。

gather方法

在 PyTorch 中,gather() 方法用于从输入张量中按照指定索引提取元素。这个方法通常用于根据索引收集特定的元素,例如根据类别索引从分类得分张量中获取对应类别的得分。

下面是使用 gather() 方法的基本用法:

import torch# 创建一个输入张量
input_tensor = torch.tensor([[1, 2],[3, 4],[5, 6]])# 创建一个索引张量
indices = torch.tensor([[0, 0],[1, 0]])# 使用 gather 方法根据索引收集元素
output_tensor = torch.gather(input_tensor, dim=1, index=indices)print(output_tensor)

在上面的例子中,我们首先创建了一个形状为 (3, 2) 的输入张量 input_tensor,以及一个形状为 (2, 2) 的索引张量 indices。然后,我们使用 gather() 方法从输入张量 input_tensor 中按照索引张量 indices 收集元素。

gather() 方法中,参数 dim 指定了在哪个维度上进行收集操作,而 index 参数指定了收集元素所使用的索引张量。

需要注意的是,索引张量 indices 的形状必须与输出张量的形状一致,或者是可以广播成与输出张量形状一致的形状。

randint

torch.randint() 是 PyTorch 中用于生成随机整数张量的函数。它可以生成一个张量,其中的元素是在指定范围内随机抽样的整数。

下面是 torch.randint() 的基本用法示例:

import torch# 生成一个形状为 (3, 3) 的随机整数张量,范围是 [0, 10)
random_integers = torch.randint(low=0, high=10, size=(3, 3))print(random_integers)

在上面的示例中,我们使用了 torch.randint() 函数来生成一个形状为 (3, 3) 的随机整数张量,其中的元素取值范围在闭区间 [low, high) 内,即从 0 到 9。

torch.randint() 函数的主要参数包括:

  • low:生成的随机整数的最小值(包含)。
  • high:生成的随机整数的最大值(不包含)。
  • size:生成的张量的形状。

你也可以不指定 low 参数,默认情况下它为 0。此外,还可以使用其他参数来控制生成的随机整数张量的设备类型、数据类型等。

这篇关于pytorch花式索引提取topk的张量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/708176

相关文章

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

MySQL 添加索引5种方式示例详解(实用sql代码)

《MySQL添加索引5种方式示例详解(实用sql代码)》在MySQL数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中,下面给大家分享MySQL添加索引5种方式示例详解(实用sql代码),... 在mysql数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中。索引可以在创建表时定义,也可

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

Python对PDF书签进行添加,修改提取和删除操作

《Python对PDF书签进行添加,修改提取和删除操作》PDF书签是PDF文件中的导航工具,通常包含一个标题和一个跳转位置,本教程将详细介绍如何使用Python对PDF文件中的书签进行操作... 目录简介使用工具python 向 PDF 添加书签添加书签添加嵌套书签Python 修改 PDF 书签Pytho

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

MySQL索引失效问题及解决方案

《MySQL索引失效问题及解决方案》:本文主要介绍MySQL索引失效问题及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql索引失效一、概要二、常见的导致MpythonySQL索引失效的原因三、如何诊断MySQL索引失效四、如何解决MySQL索引失

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命