【深度学习】S2 数学基础 P1 线性代数(上)

2024-02-14 07:44

本文主要是介绍【深度学习】S2 数学基础 P1 线性代数(上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 基本数学对象
    • 标量与变量
    • 向量
    • 矩阵
    • 张量
    • 降维求和
    • 非降维求和
    • 累计求和
  • 点积与向量积
    • 点积
    • 矩阵-向量积
    • 矩阵-矩阵乘法

深度学习的三大数学基础 —— 线性代数、微积分、概率论;
自本篇博文以下几遍博文,将对这三大数学基础进行重点提炼。

本节博文将介绍线性代数知识,为线性代数第一部分。包含基本数学对象、算数和运算,并用数学符号和相应的张量代码实现表示它们。


基本数学对象

基本数学对象包含:

  • 0维:标量与变量
  • 1维:向量
  • 2维:矩阵

标量与变量

一个简单的温度转换计算表达式,
c = 5 9 ( f − 52 ) c = \frac 5 9 (f-52) c=95(f52)

其中 c 代表摄氏度,而 f 代表华氏度。
而这个计算表达式中,数值 5、9、52 是标量值,而未知的标量值,即自变量 f 与因变量 c,都是变量值。

标量与变量在张量中,由只有一个元素的张量来表示。

import torch
# 实例化两个标量
x = torch.tensor(3.0)
y = torch.tensor(2.0)# 执行算数运算
print("x+y=", x+y, "\nx*y=", x*y, '\nx/y=', x/y, '\nx**y=', x**y)
x+y= tensor(5.) 
x*y= tensor(6.) 
x/y= tensor(1.5000) 
x**y= tensor(9.)

P.S. 在线性代数中,标量与变量通常用小写不加粗的字母表示, a a a


向量

向量可以视为由一系列标量值组成的列表,这些标量值被称为向量的元素或者分量。当使用向量来表示数据集中的样本时,它们通常具有一定的现实意义。例如一个用于表征用户个人信息的样本可以使用向量表示用户的年龄、性别、收入等标量信息。

使用张量表示向量,通常使用一维张量;

import torchx = torch.arange(4)
print(x)
tensor([0, 1, 2, 3])

索引: 访问向量中的元素,可以直接通过索引值来访问;

print(x[-1])

长度: 所谓向量的长度,指的是向量中标量的个数,通过 len() 函数获取;

print(len(x))

形状: 通过 .shape 属性访问向量的形状。形状是一个元素组,列出张量沿每个轴的长度(维数)。而对于只有一个轴的张量,其形状只有一个元素。

print(x.shape)

P.S. 在线性代数中,向量通常使用粗体小写字母表示: a \mathbf{a} a


矩阵

正如向量是将标量从零阶推广到一阶,矩阵则是将向量从一阶推广到二阶。矩阵 A m n \mathbf{A_{mn}} Amn m m m n n n 列标量组成,其中每个元素 a i j a_{ij} aij 是矩阵中第 i i i j j j 列元素。

使用张量表示矩阵,使用二维张量;

import torchx = torch.arange(20).reshape(5, 4)
print(x)
tensor([[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11],[12, 13, 14, 15],[16, 17, 18, 19]])

索引: 访问矩阵中元素,通过行索引( i i i)和列索引( j j j)来访问矩阵中的标量元素 a i j a_{ij} aij

# 访问第二行第三个元素
print(x[1][2])

转置: 交换矩阵的行和列称为矩阵的转置( A T \mathbf{A^T} AT)。对于 B = A T \mathbf{B}=\mathbf{A^T} B=AT,有 b i j = a j i b_{ij}=a_{ji} bij=aji

print(x.T)
tensor([[ 0,  4,  8, 12, 16],[ 1,  5,  9, 13, 17],[ 2,  6, 10, 14, 18],[ 3,  7, 11, 15, 19]])

对称矩阵: 对称矩阵是特殊的方阵,方阵是特殊的矩阵。对于矩阵 A m n \mathbf{A_{mn}} Amn,有方阵( m = n m=n m=n),对称矩阵( A = A T \mathbf{A}=\mathbf{A^T} A=AT

B = torch.tensor([[1, 2, 3],[2, 0, 4],[3, 4, 5]])print(B == B.T)
tensor([[True, True, True],[True, True, True],[True, True, True]])

矩阵是很有用的数据结构,其中的行可对应于不同的数据样本,列对应着不同的属性。


张量

现实世界并非是单纯的二维世界。图片,通常由 RGB 三个颜色通道构成,这就需要一个三维的数据结构来表示。而张量,可以用来表示任意维度数的数据结构。例如:向量是一阶张量,矩阵是二阶张量。

张量算法有两个基本性质:

  • 按元素运算: 两个张量按元素运算,要求其形状 shape 必须相同,张量中对应位置的标量将进行运算操作。
import torchx = torch.tensor([1.0, 2, 4, 8])
y = torch.tensor([2, 2, 2, 2])
print("x=", x)
print("y=", y)
print("x+y=", x+y)
x= tensor([1., 2., 4., 8.])
y= tensor([2, 2, 2, 2])
x+y= tensor([ 3.,  4.,  6., 10.])
  • 广播机制: 张量的广播机制用于将张量扩展,要求两个向量要分别满足形状( x x x, y y y)与( y y y, z z z)方才可以进行运算。
import torcha = torch.arange(3).reshape(3, 1)
b = torch.arange(2).reshape(1, 2)print("a=", a)
print("b=", b)
print("a*b=", a*b)
a= tensor([[0],[1],[2]])
b= tensor([[0, 1]])
a*b= tensor([[0, 0],[0, 1],[0, 2]])

更多关于张量的操作博文,请移步:【深度学习】S1 预备知识 P1 张量


降维求和

对于一个张量,我们可以使用函数 sum() 进行简答求和;

import torchx = torch.arange(12).reshape(3, -1)
print(x)
print(x.sum())
tensor([[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]])
tensor(66)

在默认情况下,调用求和函数会降低张量的维度直到变成一个标量。但是我们也可以通过 sum() 函数中的变量 axis= 来指定张量沿哪一个轴来进行求和操作。比如;

print(x.sum(axis=0))
tensor([[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]])
tensor([12, 15, 18, 21])

通过在函数 sum() 中设置 axis= 参数,我们可以沿着二维张量的横坐标将其合并成一维的张量向量。

另外,针对多维张量,我们还可以通过将 axis 参数设置为一个数组,来实现同时降低多个维度到指定的维度。

print(x.sum(axis=[0, 1]))
tensor(66)

观察结果可知,数据维度降至默认的标量形式。


非降维求和

然而,在某些情况下,我们可能希望保留计算出的和的结果的原始维度,此时,在 sum(axis=) 函数中需要增加设置 keepdims 参数;

print(x.sum(axis=0))
print(x.sum(axis=0, keepdims=True))
# 打印维度信息
print((x.sum(axis=0)).shape)
print((x.sum(axis=0, keepdims=True)).shape)
tensor([12, 15, 18, 21])
tensor([[12, 15, 18, 21]])
# 维度信息
torch.Size([4])
torch.Size([1, 4])

观察两个结果的对比,明显可以看出它们的维度存在差异。


累计求和

使用 cumsum() 函数,可以实现张量在某一维度上的累加求和操作。

import torchx = torch.arange(12).reshape(3, -1)
print(x)
print(x.cumsum(axis=0))
tensor([[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]])
tensor([[ 0,  1,  2,  3],[ 4,  6,  8, 10],[12, 15, 18, 21]])

可以观察到,张量在其维度上进行逐层累加求和。如上,便是 cumsum() 函数。


点积与向量积

点积

点积(也称为内积)是指两个张量在对应位置上元素相乘后的和。

import torchx = torch.arange(4, dtype=torch.float32)
y = torch.ones(4, dtype=torch.float32)
print("x=", x)
print("y=", y)
print(torch.dot(x, y))
x= tensor([0., 1., 2., 3.])
y= tensor([1., 1., 1., 1.])
tensor(6.)

上述结果: 6 = 0 ∗ 1 + 1 ∗ 1 + 2 ∗ 1 + 3 ∗ 1 6 = 0*1+1*1+2*1+3*1 6=01+11+21+31


矩阵-向量积

矩阵向量积,指的是矩阵与向量的乘法,也就是将矩阵与向量相乘得到一个新的向量。

e . g . e.g. e.g. 假设我们有矩阵 A \mathbf{A} A 和向量 v \mathbf{v} v,其中 A \mathbf{A} A 是一个 m ∗ n m*n mn 矩阵, v \mathbf{v} v 是一个 n n n 维向量,那么它们的向量积 A v \mathbf{Av} Av 是一个 m m m 维向量;

在这里插入图片描述

读者可以借助以下张量的示例来增进理解。

在张量中,通过 mv() 函数来实现矩阵向量积;其中 m m m 意味着矩阵 matrix, v v v 意味着向量 vector;

import torchx = torch.arange(20, dtype=torch.float32).reshape(5, 4)
y = torch.ones(4, dtype=torch.float32)
print("x=", x)
print("y=", y)
print(torch.mv(x, y))
x= tensor([[ 0.,  1.,  2.,  3.],[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.],[12., 13., 14., 15.],[16., 17., 18., 19.]])
y= tensor([1., 1., 1., 1.])
tensor([ 6., 22., 38., 54., 70.])

矩阵-矩阵乘法

矩阵与矩阵乘法,可以看作简单地执行多次矩阵-向量积,并将结果拼接在一起形成矩阵。假设有两个矩阵 A \mathbf{A} A B \mathbf{B} B,其中 A \mathbf{A} A 是一个 m × n m×n m×n 的矩阵, B \mathbf{B} B 是一个 n × p n×p n×p 的矩阵,那么它们的乘积 C = A × B C=A×B C=A×B 是一个 m × p m×p m×p 的矩阵。

在这里插入图片描述

e . g . e.g. e.g. 矩阵-矩阵乘法使用 mm() 函数实现;

import torchx = torch.arange(20, dtype=torch.float32).reshape(5, 4)
y = torch.ones(12, dtype=torch.float32).reshape(4, 3)
print("x=", x)
print("y=", y)
print(torch.mm(x, y))
x= tensor([[ 0.,  1.,  2.,  3.],[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.],[12., 13., 14., 15.],[16., 17., 18., 19.]])
y= tensor([[1., 1., 1.],[1., 1., 1.],[1., 1., 1.],[1., 1., 1.]])
tensor([[ 6.,  6.,  6.],[22., 22., 22.],[38., 38., 38.],[54., 54., 54.],[70., 70., 70.]])

以上便是深度学习数学基础,线性代数第一部分;
线性代数第二部分将讲述 L 1 L1 L1 范数以及 L 2 L2 L2 范数,以及其张量实现。

如有任何问题,请留言或联系!谢谢!!

2024.2.13

这篇关于【深度学习】S2 数学基础 P1 线性代数(上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/707898

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

安装centos8设置基础软件仓库时出错的解决方案

《安装centos8设置基础软件仓库时出错的解决方案》:本文主要介绍安装centos8设置基础软件仓库时出错的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录安装Centos8设置基础软件仓库时出错版本 8版本 8.2.200android4版本 javas

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷