【深度学习】S2 数学基础 P1 线性代数(上)

2024-02-14 07:44

本文主要是介绍【深度学习】S2 数学基础 P1 线性代数(上),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 基本数学对象
    • 标量与变量
    • 向量
    • 矩阵
    • 张量
    • 降维求和
    • 非降维求和
    • 累计求和
  • 点积与向量积
    • 点积
    • 矩阵-向量积
    • 矩阵-矩阵乘法

深度学习的三大数学基础 —— 线性代数、微积分、概率论;
自本篇博文以下几遍博文,将对这三大数学基础进行重点提炼。

本节博文将介绍线性代数知识,为线性代数第一部分。包含基本数学对象、算数和运算,并用数学符号和相应的张量代码实现表示它们。


基本数学对象

基本数学对象包含:

  • 0维:标量与变量
  • 1维:向量
  • 2维:矩阵

标量与变量

一个简单的温度转换计算表达式,
c = 5 9 ( f − 52 ) c = \frac 5 9 (f-52) c=95(f52)

其中 c 代表摄氏度,而 f 代表华氏度。
而这个计算表达式中,数值 5、9、52 是标量值,而未知的标量值,即自变量 f 与因变量 c,都是变量值。

标量与变量在张量中,由只有一个元素的张量来表示。

import torch
# 实例化两个标量
x = torch.tensor(3.0)
y = torch.tensor(2.0)# 执行算数运算
print("x+y=", x+y, "\nx*y=", x*y, '\nx/y=', x/y, '\nx**y=', x**y)
x+y= tensor(5.) 
x*y= tensor(6.) 
x/y= tensor(1.5000) 
x**y= tensor(9.)

P.S. 在线性代数中,标量与变量通常用小写不加粗的字母表示, a a a


向量

向量可以视为由一系列标量值组成的列表,这些标量值被称为向量的元素或者分量。当使用向量来表示数据集中的样本时,它们通常具有一定的现实意义。例如一个用于表征用户个人信息的样本可以使用向量表示用户的年龄、性别、收入等标量信息。

使用张量表示向量,通常使用一维张量;

import torchx = torch.arange(4)
print(x)
tensor([0, 1, 2, 3])

索引: 访问向量中的元素,可以直接通过索引值来访问;

print(x[-1])

长度: 所谓向量的长度,指的是向量中标量的个数,通过 len() 函数获取;

print(len(x))

形状: 通过 .shape 属性访问向量的形状。形状是一个元素组,列出张量沿每个轴的长度(维数)。而对于只有一个轴的张量,其形状只有一个元素。

print(x.shape)

P.S. 在线性代数中,向量通常使用粗体小写字母表示: a \mathbf{a} a


矩阵

正如向量是将标量从零阶推广到一阶,矩阵则是将向量从一阶推广到二阶。矩阵 A m n \mathbf{A_{mn}} Amn m m m n n n 列标量组成,其中每个元素 a i j a_{ij} aij 是矩阵中第 i i i j j j 列元素。

使用张量表示矩阵,使用二维张量;

import torchx = torch.arange(20).reshape(5, 4)
print(x)
tensor([[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11],[12, 13, 14, 15],[16, 17, 18, 19]])

索引: 访问矩阵中元素,通过行索引( i i i)和列索引( j j j)来访问矩阵中的标量元素 a i j a_{ij} aij

# 访问第二行第三个元素
print(x[1][2])

转置: 交换矩阵的行和列称为矩阵的转置( A T \mathbf{A^T} AT)。对于 B = A T \mathbf{B}=\mathbf{A^T} B=AT,有 b i j = a j i b_{ij}=a_{ji} bij=aji

print(x.T)
tensor([[ 0,  4,  8, 12, 16],[ 1,  5,  9, 13, 17],[ 2,  6, 10, 14, 18],[ 3,  7, 11, 15, 19]])

对称矩阵: 对称矩阵是特殊的方阵,方阵是特殊的矩阵。对于矩阵 A m n \mathbf{A_{mn}} Amn,有方阵( m = n m=n m=n),对称矩阵( A = A T \mathbf{A}=\mathbf{A^T} A=AT

B = torch.tensor([[1, 2, 3],[2, 0, 4],[3, 4, 5]])print(B == B.T)
tensor([[True, True, True],[True, True, True],[True, True, True]])

矩阵是很有用的数据结构,其中的行可对应于不同的数据样本,列对应着不同的属性。


张量

现实世界并非是单纯的二维世界。图片,通常由 RGB 三个颜色通道构成,这就需要一个三维的数据结构来表示。而张量,可以用来表示任意维度数的数据结构。例如:向量是一阶张量,矩阵是二阶张量。

张量算法有两个基本性质:

  • 按元素运算: 两个张量按元素运算,要求其形状 shape 必须相同,张量中对应位置的标量将进行运算操作。
import torchx = torch.tensor([1.0, 2, 4, 8])
y = torch.tensor([2, 2, 2, 2])
print("x=", x)
print("y=", y)
print("x+y=", x+y)
x= tensor([1., 2., 4., 8.])
y= tensor([2, 2, 2, 2])
x+y= tensor([ 3.,  4.,  6., 10.])
  • 广播机制: 张量的广播机制用于将张量扩展,要求两个向量要分别满足形状( x x x, y y y)与( y y y, z z z)方才可以进行运算。
import torcha = torch.arange(3).reshape(3, 1)
b = torch.arange(2).reshape(1, 2)print("a=", a)
print("b=", b)
print("a*b=", a*b)
a= tensor([[0],[1],[2]])
b= tensor([[0, 1]])
a*b= tensor([[0, 0],[0, 1],[0, 2]])

更多关于张量的操作博文,请移步:【深度学习】S1 预备知识 P1 张量


降维求和

对于一个张量,我们可以使用函数 sum() 进行简答求和;

import torchx = torch.arange(12).reshape(3, -1)
print(x)
print(x.sum())
tensor([[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]])
tensor(66)

在默认情况下,调用求和函数会降低张量的维度直到变成一个标量。但是我们也可以通过 sum() 函数中的变量 axis= 来指定张量沿哪一个轴来进行求和操作。比如;

print(x.sum(axis=0))
tensor([[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]])
tensor([12, 15, 18, 21])

通过在函数 sum() 中设置 axis= 参数,我们可以沿着二维张量的横坐标将其合并成一维的张量向量。

另外,针对多维张量,我们还可以通过将 axis 参数设置为一个数组,来实现同时降低多个维度到指定的维度。

print(x.sum(axis=[0, 1]))
tensor(66)

观察结果可知,数据维度降至默认的标量形式。


非降维求和

然而,在某些情况下,我们可能希望保留计算出的和的结果的原始维度,此时,在 sum(axis=) 函数中需要增加设置 keepdims 参数;

print(x.sum(axis=0))
print(x.sum(axis=0, keepdims=True))
# 打印维度信息
print((x.sum(axis=0)).shape)
print((x.sum(axis=0, keepdims=True)).shape)
tensor([12, 15, 18, 21])
tensor([[12, 15, 18, 21]])
# 维度信息
torch.Size([4])
torch.Size([1, 4])

观察两个结果的对比,明显可以看出它们的维度存在差异。


累计求和

使用 cumsum() 函数,可以实现张量在某一维度上的累加求和操作。

import torchx = torch.arange(12).reshape(3, -1)
print(x)
print(x.cumsum(axis=0))
tensor([[ 0,  1,  2,  3],[ 4,  5,  6,  7],[ 8,  9, 10, 11]])
tensor([[ 0,  1,  2,  3],[ 4,  6,  8, 10],[12, 15, 18, 21]])

可以观察到,张量在其维度上进行逐层累加求和。如上,便是 cumsum() 函数。


点积与向量积

点积

点积(也称为内积)是指两个张量在对应位置上元素相乘后的和。

import torchx = torch.arange(4, dtype=torch.float32)
y = torch.ones(4, dtype=torch.float32)
print("x=", x)
print("y=", y)
print(torch.dot(x, y))
x= tensor([0., 1., 2., 3.])
y= tensor([1., 1., 1., 1.])
tensor(6.)

上述结果: 6 = 0 ∗ 1 + 1 ∗ 1 + 2 ∗ 1 + 3 ∗ 1 6 = 0*1+1*1+2*1+3*1 6=01+11+21+31


矩阵-向量积

矩阵向量积,指的是矩阵与向量的乘法,也就是将矩阵与向量相乘得到一个新的向量。

e . g . e.g. e.g. 假设我们有矩阵 A \mathbf{A} A 和向量 v \mathbf{v} v,其中 A \mathbf{A} A 是一个 m ∗ n m*n mn 矩阵, v \mathbf{v} v 是一个 n n n 维向量,那么它们的向量积 A v \mathbf{Av} Av 是一个 m m m 维向量;

在这里插入图片描述

读者可以借助以下张量的示例来增进理解。

在张量中,通过 mv() 函数来实现矩阵向量积;其中 m m m 意味着矩阵 matrix, v v v 意味着向量 vector;

import torchx = torch.arange(20, dtype=torch.float32).reshape(5, 4)
y = torch.ones(4, dtype=torch.float32)
print("x=", x)
print("y=", y)
print(torch.mv(x, y))
x= tensor([[ 0.,  1.,  2.,  3.],[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.],[12., 13., 14., 15.],[16., 17., 18., 19.]])
y= tensor([1., 1., 1., 1.])
tensor([ 6., 22., 38., 54., 70.])

矩阵-矩阵乘法

矩阵与矩阵乘法,可以看作简单地执行多次矩阵-向量积,并将结果拼接在一起形成矩阵。假设有两个矩阵 A \mathbf{A} A B \mathbf{B} B,其中 A \mathbf{A} A 是一个 m × n m×n m×n 的矩阵, B \mathbf{B} B 是一个 n × p n×p n×p 的矩阵,那么它们的乘积 C = A × B C=A×B C=A×B 是一个 m × p m×p m×p 的矩阵。

在这里插入图片描述

e . g . e.g. e.g. 矩阵-矩阵乘法使用 mm() 函数实现;

import torchx = torch.arange(20, dtype=torch.float32).reshape(5, 4)
y = torch.ones(12, dtype=torch.float32).reshape(4, 3)
print("x=", x)
print("y=", y)
print(torch.mm(x, y))
x= tensor([[ 0.,  1.,  2.,  3.],[ 4.,  5.,  6.,  7.],[ 8.,  9., 10., 11.],[12., 13., 14., 15.],[16., 17., 18., 19.]])
y= tensor([[1., 1., 1.],[1., 1., 1.],[1., 1., 1.],[1., 1., 1.]])
tensor([[ 6.,  6.,  6.],[22., 22., 22.],[38., 38., 38.],[54., 54., 54.],[70., 70., 70.]])

以上便是深度学习数学基础,线性代数第一部分;
线性代数第二部分将讲述 L 1 L1 L1 范数以及 L 2 L2 L2 范数,以及其张量实现。

如有任何问题,请留言或联系!谢谢!!

2024.2.13

这篇关于【深度学习】S2 数学基础 P1 线性代数(上)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/707898

相关文章

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?