数学建模:K-means聚类手肘法确定k值(含python实现)

2024-02-13 22:04

本文主要是介绍数学建模:K-means聚类手肘法确定k值(含python实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理

  当K-means聚类的k值不被指定时,可以通过手肘法来估计聚类数量。
  在聚类的过程中,随着聚类数的增大,样本划分会变得更加精细,每个类别的聚合程度更高,那么误差平方和(SSE)会逐渐变小,误差平方和即该类重心与其内部成员位置距离的平方和。SSE是手肘法的核心指标,其公式为: S S E = ∑ i = 1 k ∑ p ∈ C ∣ p − m i ∣ 2 SSE=\sum_{i=1}^{k}\sum_{p\in C}|p-m_i|^2 SSE=i=1kpCpmi2  其中, c i c_i ci是第 i 个簇, p p p c i c_i ci中的样本点, m i m_i mi c i c_i ci的质心( c i c_i ci中所有样本均值),代表了聚类效果的好坏。
  当 k 小于真实聚类数时,由于 k 的增大会增加每个簇的聚合程度,故 SSE 的下降幅度会很大;而当 k 到达真实聚类数时,再增加 k 所得到的聚合程度回报会迅速变小,所以 SSE 的下降幅度会骤减,然后随着 k 值的继续增大而趋于平缓。也就是说 SSE 和 k 的关系图是一个手肘的形状,而这个肘部对应的 k 值就是数据的真实聚类数。

代码

import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
plt.rcParams['font.sans-serif'] = ['SimHei']	# 显示中文
plt.rcParams['axes.unicode_minus'] = False		# 显示负号
# 加载数据
X=data.iloc[:, 3:15]
# 标准化数据
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)# 使用PCA进行降维
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)# 使用手肘法确定最佳的K值
inertia = []
for k in range(1, 11):kmeans = KMeans(n_clusters=k, random_state=42)kmeans.fit(X_scaled)inertia.append(kmeans.inertia_)# 绘制手肘法图表
plt.figure(figsize=(8, 4))
plt.plot(range(1, 11), inertia, marker='o', linestyle='--')plt.ylabel('误差平方和')
plt.title('手肘法图表')
plt.savefig('手肘法图.png',dpi=300)
plt.grid(True)plt.show()# 从手肘法图表中选择最佳的K值
# 在这个示例中,根据手肘法,选择K=3# 使用最佳的K值进行K-Means聚类
best_k = 4
kmeans = KMeans(n_clusters=best_k, random_state=42)
kmeans.fit(X_scaled)# 将簇标签添加到原始数据中
data['亚类别'] = kmeans.labels_# 打印每个簇中的样本数量
print(data['亚类别'].value_counts())# PCA绘制降维后的数据及其簇分布
plt.figure(figsize=(8, 6))
plt.scatter(X_pca[:, 0], X_pca[:, 1], c=kmeans.labels_, cmap='viridis')
plt.xlabel('主成分1')
plt.ylabel('主成分2')
plt.title('K-Means 结果')
plt.savefig('K-Means 结果.png',dpi=300)
plt.show()

  结果:
在这里插入图片描述
  这个问题中,根据手肘法,我们选择最佳k值应该为4。

这篇关于数学建模:K-means聚类手肘法确定k值(含python实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/706726

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使