【ceph的通用解决方案】-ceph纠删码理论与实践

2024-02-13 15:50

本文主要是介绍【ceph的通用解决方案】-ceph纠删码理论与实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:【吴业亮】
博客:https://wuyeliang.blog.csdn.net/

开篇:
目前企业的业务场景多种多样,并非所有Ceph存储解决方案都是相同的,了解工作负载和容量要求对于设Ceph解决方案至关重要。Ceph可帮助企业通过统一的分布式集群提供对象存储、块存储或文件系统存储。在设计流程中,这些集群解决方案针对每项要求都进行了优化。该设计流程的首要因素包括 IOPS 或带宽要求、存储容量需求以及架构和组件选择,确保这些因素的合理性有助于完美平衡性能和成本。不同类型的工作负载需要不同的存储基础设施方案。

在这里插入图片描述
下面将从以下6个方面介绍ceph的通用解决方案

  • 性能方面:

1、如何ssd作为Ceph-osd的日志盘使用
2、如何同一个Ceph集群分别创建ssd和hdd池
3、如何将ssd作为hdd的缓存池
4、如何指定ssd盘为主osd,hdd为从osd

  • 稳定及数据安全性方面:

5、Ceph双副本如何保证宕机数据的安全性
6、Ceph纠删码理论与实践

注意:该文章同时在华云数据官方公众号上发布

智汇华云 | Ceph的正确玩法之Ceph纠删码理论与实践

下面我们开始专题:Ceph纠删码理论与实践

一、纠删码原理
纠删码(ErasureCoding,EC)是一种编码容错技术,最早是在通信行业解决部分数据在传输中的损耗问题。其基本原理就是把传输的信号分段,加入一定的校验再让各段间发生相互关联,即使在传输过程中丢失部分信号,接收端仍然能通过算法将完整的信息计算出来。在数据存储中,纠删码将数据分割成片段,把冗余数据块扩展和编码,并将其存储在不同的位置,比如磁盘、存储节点或者其他地理位置。如果需要严格区分,实际上按照误码控制的不同功能,可分为检错、纠错和纠删3种类型。

•检错码仅具备识别错码功能而无纠正错码功能。

•纠错码不仅具备识别错码功能,同时具备纠正错码功能。

•纠删码则不仅具备识别错码和纠正错码的功能,而且当错码超过纠正范围时,还可把无法纠错的信息删除。

从纠删码基本的形态看,它是k个数据块+m个校验块的结构,其中k和m值可以按照一定的规则设定,可以用公式:n=k+m来表示。变量k代表原始数据或符号的值。变量m代表故障后添加的提供保护的额外或冗余符号的值。变量n代表纠删码过程后创建的符号的总值。当小于m个存储块(数据块或校验块)损坏的情况下,整体数据块可以通过计算剩余存储块上的数据得到,整体数据不会丢失。

下面以k=2,m=1为例,介绍一下如何以纠删码的形式将一个名称为cat.jpg的对象存放在Ceph中,假定该对象的内容为ABCDEFGH。客户端在将cat.jpg上传到Ceph以后,会在主OSD中调用相应的纠删码算法对数据进行编码计算:将原来的ABCDEFGH拆分成两个分片,对应图11-2中的条带分片1(内容为ABCD)和条带分片2(内容为EFGH),之后再计算出另外一个校验条带分片3(内容为WXYZ)。按照crushmap所指定的规则,将这3个分片随机分布在3个不同的OSD上面,完成对这个对象的存储操作。如图所示。
在这里插入图片描述

下面再看一下如何使用纠删码读取数据,同样还是以cat.jpg为例。客户端在发起读取cat.jpg请求以后,这个对象所在PG的主OSD会向其他关联的OSD发起读取请求,比如主OSD是图中
图中的OSD1,当请求发送到了OSD2和OSD3,此时刚好OSD2出现故障无法回应请求,导致最终只能获取到OSD1(内容为ABCD)和OSD3(WXYZ)的条带分片,此时OSD1作为主OSD会对OSD1和OSD3的数据分片做纠删码解码操作,计算出OSD2上面的分片内容(即EFGH),之后重新组合出新的cat.jpg内容(ABCDEFGH),最终将该结果返回给客户端。整个过程如图所示。
在这里插入图片描述

虽然纠删码能够提供和副本相近的数据可靠性,并降低冗余数据的开销,整体上能提高存储设备的可用空间。但是,纠删码所带来的额外开销主要是大量计算和网络高负载,优点同时伴随缺点。特别是在一个硬盘出现故障的情况下,重建数据非常耗费CPU资源,而且计算一个数据块时需要读出大量数据并通过网络传输。相比副本数据恢复,纠删码数据恢复时给网络带来巨大的负担。因此,使用纠删码对硬件的设备性能是一个较大的考验,这点需要注意。另外,需要注意的是,使用纠删码所建立的存储资源池无法新建RBD块设备。

Ceph安装后默认有DefaultRule,这个Rule默认是在Host层级进行三副本读写。副本技术带来的优点是高可靠性、优异的读写性能和快速的副本恢复。然而,副本技术带来的成本压力是较高的,特别是三副本数据情景下,每TB数据的成本是硬盘裸容量3倍以上(包括节点CPU和内存均摊开销)。纠删码具备与副本相近的高可用特性,而且降低了冗余数据的开销,同时带来了大量计算和网络高负载。

二、纠删码实践

纠删码是通过创建erasure类型的Ceph池实现的。这些池是基于一个纠删码配置文件进行创建的,在这个配置文件中定义了纠删码的特征值。现在我们将创建一个纠删码配置文件,并根据这个配置文件创建纠删码池。下面的命令将创建一个名为Ecprofile的纠删码配置文件,它定义的特征值是:k=3和m=2,两者分别表示数据块和校验块的数量。所以,每一个存储在纠删码池中的对象都将分为3(即k)个数据块,和2(即m)个额外添加的校验块,一共有5个块(k+m)。最后,这5(即k+m)个块将分布在不同故障区域中的OSD上。

1、创建纠删码配置文件:

# ceph  osd erasure-code-profile  set Ecprofile crush-failure-domain=osd k=3 m=2

2、查看配置文件

# ceph osd erasure-code-profile ls
Ecprofile
default
# ceph osd erasure-code-profile get  Ecprofile
crush-device-class=
crush-failure-domain=osd
crush-root=default
jerasure-per-chunk-alignment=false
k=3
m=2
plugin=jerasure
technique=reed_sol_van
w=8

我们顺便也看ceph默认的配置文件

# ceph osd erasure-code-profile get default
k=2
m=1
plugin=jerasure
technique=reed_sol_van

3、基于上一步生成的纠删码配置文件新建一个erasure类型的Ceph池:

# ceph osd pool create Ecpool 16 16 erasure Ecprofile
pool 'Ecpool' created

4、检查新创建的池的状态,你会发现池的大小是5(k+m),也就是说,erasure大小是5。因此,数据将被写入五个不同的OSD中:

# ceph osd dump | grep Ecpool 
pool 8 'Ecpool' erasure size 5 min_size 4 crush_rule 3 object_hash rjenkins pg_num 16 pgp_num 16 last_change 231 flags hashpspool stripe_width 12288

5、现在我们创建个文件放到纠删码池中。

# echo test > test
# ceph osd pool ls
Ecpool
# rados put -p Ecpool object1 test
# rados  -p  Ecpool ls
object1

6、检查EC池中和object1的OSDmap。命令的输出将清晰地显示对象的每个块所在的OSDID。正如步骤1)中说明的那样,object1被分为3(m)个数据块和2(k)个额外的校验块,因此,5个块分别存储在Ceph集群完全不同的OSD上。在这个演示中,object1一直存储在这5个OSD中,它们是osd.5、osd.1、osd.3、osd.2、osd.4。

# ceph osd  map Ecpool object1
osdmap e233 pool 'Ecpool' (8) object 'object1' -> pg 8.bac5debc (8.c) -> up ([5,1,3,2,4], p5) acting ([5,1,3,2,4], p5)

二、纠删码测试
1、我们先来关闭一个osd

# systemctl stop ceph-osd@3

停止osd.3,检查EC池和object1的OSDmap。你应该注意,这里的osd.3变成NONE了,这意味着osd.3在这个池是不可用的:

# ceph osd  map Ecpool object1
osdmap e235 pool 'Ecpool' (8) object 'object1' -> pg 8.bac5debc (8.c) -> up ([5,1,NONE,2,4], p5) acting ([5,1,NONE,2,4], p5)

2、我们再来关闭一个osd

# systemctl stop ceph-osd@5

停止osd.5,检查EC池和object1的OSDmap。你应该注意,这里的osd.5变成NONE了,这意味着osd.5在这个池是不可用的:

# ceph osd  map Ecpool object1
osdmap e237 pool 'Ecpool' (8) object 'object1' -> pg 8.bac5debc (8.c) -> up ([NONE,1,NONE,2,4], p1) acting ([NONE,1,NONE,2,4], p1)

3、我们从纠删码池中下载文件

# rados get  -p Ecpool object1 /tmp/wyl

参考:

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/1.2.3/html/storage_strategies/erasure-code-profiles
https://ceph.seekerliu.com/rados/operations/erasure-code/

这篇关于【ceph的通用解决方案】-ceph纠删码理论与实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/705952

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分