【自然语言处理】:实验1布置,Word2VecTranE的实现

2024-02-13 13:36

本文主要是介绍【自然语言处理】:实验1布置,Word2VecTranE的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

清华大学驭风计划

因为篇幅原因实验答案分开上传,后续持续更新中,请敬请期待

如果需要详细的实验报告或者代码可以私聊博主

有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~

实验1: Word2Vec&TranE的实现

案例简介

Word2Vec是词嵌入的经典模型,它通过词之间的上下文信息来建模词的相似度。TransE是知识表示学习领域的经典模型,它借鉴了Word2Vec的思路,用“头实体+关系=尾实体”这一简单的训练目标取得了惊人的效果。本次任务要求在给定的框架中分别基于Text8和Wikidata数据集实现Word2Vec和TransE,并用具体实例体会词向量和实体/关系向量的含义。

A ,Word2Vec实现

在这个部分,你需要基于给定的代码实现Word2Vec,在Text8语料库上进行训练,并在给定的WordSim353数据集上进行测试

WordSim353是一个词语相似度基准数据集,在WordSim353数据集中,表格的第一、二列是一对单词,第三列中是该单词对的相似度的人工打分(第三列也已经被单独抽出为ground_truth.npy)。我们需要用我们训练得到的词向量对单词相似度进行打分,并与人工打分计算相关性系数,总的来说,越高的相关性系数代表越好的词向量质量。

我们提供了一份基于gensim的Word2Vec实现,请同学们阅读代码并在Text8语料库上进行训练, 关于gensim的Word2Vec模型更多接口和用法,请参考[2]。

由于gensim版本不同,模型中的size参数可能需要替换为vector_size(不报错的话不用管)

运行`word2vec.py` 后,模型会保存在`word2vec_gensim`中,同时代码会加载WordSim353数据集,进行词对相关性评测,得到的预测得分保存在score.npy文件中

之后在Word2Vec文件夹下运行 ``python evaluate.py score.npy``, 程序会自动计算score.npy 和ground_truth.npy 之间的相关系数得分,此即为词向量质量得分。

任务

- 运行`word2vec.py`训练Word2Vec模型, 在WordSim353上衡量词向量的质量。

- 探究Word2Vec中各个参数对模型的影响,例如词向量维度、窗口大小、最小出现次数。

- (选做)对Word2Vec模型进行改进,改进的方法可以参考[3],包括加入词义信息、字向量和词汇知识等方法。请详细叙述采用的改进方法和实验结果分析。

快速上手(参考)

在Word2Vec文件夹下运行 ``python word2vec.py``, 即可成功运行, 运行生成两个文件 word2vec_gensim和score.npy。

B, TransE实现

这个部分中,你需要根据提供的代码框架实现TransE,在wikidata数据集训练出实体和关系的向量表示,并对向量进行分析。

在TransE中,每个实体和关系都由一个向量表示,分别用$h, r,t$表示头实体、关系和尾实体的表示向量,首先对这些向量进行归一化

h=h/||h|| 

r=r/||r||

t=t/||t||

则得分函数(score function)为

f(h,r,t)=||h+r-t||

其中||\cdot||表示向量的范数。得分越小,表示该三元组越合理。

在计算损失函数时,TransE采样一对正例和一对负例,并让正例的得分小于负例,优化下面的损失函数

其中(h,r,t), (h',r',t')分别表示正例和负例,gamma是​一个超参数(margin),用于控制正负例的距离。

任务

- 在文件`TransE.py`中,你需要补全`TransE`类中的缺失项,完成TransE模型的训练。需要补全的部分为:

  - `_calc()`:计算给定三元组的得分函数(score function)

  - `loss()`:计算模型的损失函数(loss function)

- 完成TransE的训练,得到实体和关系的向量表示,存储在`entity2vec.txt`和`relation2vec.txt`中。

- 给定头实体Q30,关系P36,最接近的尾实体是哪些?

- 给定头实体Q30,尾实体Q49,最接近的关系是哪些?

- 在 https://www.wikidata.org/wiki/Q30 和 https://www.wikidata.org/wiki/Property:P36 中查找上述实体和关系的真实含义,你的程序给出了合理的结果吗?请分析原因。

- (选做)改变参数`p_norm`和`margin`,重新训练模型,分析模型的变化。

快速上手(参考)

在TransE文件夹下运行 ``python TransE.py``, 可以看到程序在第63行和第84行处为填写完整而报错,将这两处根据所学知识填写完整即可运行成功代码(任务第一步),然后进行后续任务。

 评分标准

请提交代码和实验报告,评分将从代码的正确性、报告的完整性和任务的完成情况等方面综合考量。

参考资料

[1] https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

[2] https://radimrehurek.com/gensim/models/word2vec.html

[3] A unified model for word sense representation and disambiguation. in Proceedings of EMNLP, 2014.


 

这篇关于【自然语言处理】:实验1布置,Word2VecTranE的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/705660

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock