[树] 求树(孩子链表)的深度 与其他基本操作(严蔚敏《数据结构》6.63)

本文主要是介绍[树] 求树(孩子链表)的深度 与其他基本操作(严蔚敏《数据结构》6.63),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目来源:严蔚敏《数据结构》C语言版本习题册 6.63

【题目】对以孩子链表表示的树编写计算树的深度的算法

【答案】

/*-------------------------|6.63 求树的深度         |-------------------------*/
int SubTreeDepth(CTree T, int index) { //序号为index的子树深度int max=-1; //孩子的最大深度int sd; //孩子的深度CNode *p;if (!T.nodes[index].firstchild) return 1; //没有孩子,深度为1for (p=T.nodes[index].firstchild; p; p=p->next) { //遍历该结点的所有孩子sd = SubTreeDepth(T, p->index); //求孩子的深度if (max<sd) max=sd;}return max+1; //孩子的最大深度+1
}
int TreeDepth(CTree T) { return SubTreeDepth(T, T.r);
}

【其他基本操作】

// 树的层序次序+每个结点的度 --> 创建CTree
Status CreateCTreeByLevelDegree(CTree *pT,char *levelstr, int *degree) {CNode *c,*sibling;int parent;int i,cnt;//创建结点for (i=0; i<strlen(levelstr); ++i) {//赋值pT->nodes[i].data = levelstr[i];pT->nodes[i].firstchild = NULL;}pT->n=strlen(levelstr); //个数pT->r=0; //根结点//为孩子找爸爸parent=0; //当前的爸爸i=1; //遍历孩子cnt=0; //已经为parent找到了cnt个孩子while (i<strlen(levelstr)) {if (degree[parent]==0 || cnt==degree[parent]) { //parent没有孩子 || parent的孩子已经全部找到cnt=0;parent++;continue;}cnt++; //为parent找到了一个孩子//创建孩子结点c = (CNode *)malloc(sizeof(CNode)); if (!c) exit(OVERFLOW);c->index = i; //孩子的编号c->next = NULL;if (cnt==1) { //第一个孩子pT->nodes[parent].firstchild = c;} else { //不是第一个孩子for(sibling=pT->nodes[parent].firstchild; sibling->next; sibling=sibling->next) ;sibling->next = c;}i++;}return TRUE;
}
// 先根遍历
void SubPreOrder(CTree T, int index) {CNode *child;visit(T.nodes[index].data);for (child=T.nodes[index].firstchild; child; child=child->next)SubPreOrder(T, child->index);
}
void PreOrder(CTree T) {SubPreOrder(T, T.r);
}

【完整代码】

#include<stdio.h>
#include<stdlib.h>
#include<string.h>#ifndef BASE
#define BASE
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
#define OVERFLOW -2
typedef int Status;
typedef int bool;
#endif#define TElemType char
void visit(TElemType e) {printf("%c", e);
}
#define MAX_TREE_SIZE 100
#define maxSize 50typedef struct CNode{int index; //这个孩子的结点号(注意:在严书中变量名为child)struct CNode *next; //下一个孩子结点
}CNode, *ChildPtr; //孩子结点结构(在严书中名为CTNode)
typedef struct{TElemType data;CNode* firstchild;
}PNode; //双亲结点结构(在严书中,结构名为CTBox)
typedef struct{PNode nodes[MAX_TREE_SIZE];int n,r; //结点数 和 根结点的位置
}CTree; //树结构// 先根遍历
void SubPreOrder(CTree T, int index) {CNode *child;visit(T.nodes[index].data);for (child=T.nodes[index].firstchild; child; child=child->next)SubPreOrder(T, child->index);
}
void PreOrder(CTree T) {SubPreOrder(T, T.r);
}/*-------------------------|6.63 求树的深度         |-------------------------*/
int SubTreeDepth(CTree T, int index) { //序号为index的子树深度int max=-1; //孩子的最大深度int sd; //孩子的深度CNode *p;if (!T.nodes[index].firstchild) return 1; //没有孩子,深度为1for (p=T.nodes[index].firstchild; p; p=p->next) { //遍历该结点的所有孩子sd = SubTreeDepth(T, p->index); //求孩子的深度if (max<sd) max=sd;}return max+1; //孩子的最大深度+1
}
int TreeDepth(CTree T) { return SubTreeDepth(T, T.r);
}// 树的层序次序+每个结点的度 --> 创建CTree
Status CreateCTreeByLevelDegree(CTree *pT,char *levelstr, int *degree) {CNode *c,*sibling;int parent;int i,cnt;//创建结点for (i=0; i<strlen(levelstr); ++i) {//赋值pT->nodes[i].data = levelstr[i];pT->nodes[i].firstchild = NULL;}pT->n=strlen(levelstr); //个数pT->r=0; //根结点//为孩子找爸爸parent=0; //当前的爸爸i=1; //遍历孩子cnt=0; //已经为parent找到了cnt个孩子while (i<strlen(levelstr)) {if (degree[parent]==0 || cnt==degree[parent]) { //parent没有孩子 || parent的孩子已经全部找到cnt=0;parent++;continue;}cnt++; //为parent找到了一个孩子//创建孩子结点c = (CNode *)malloc(sizeof(CNode)); if (!c) exit(OVERFLOW);c->index = i; //孩子的编号c->next = NULL;if (cnt==1) { //第一个孩子pT->nodes[parent].firstchild = c;} else { //不是第一个孩子for(sibling=pT->nodes[parent].firstchild; sibling->next; sibling=sibling->next) ;sibling->next = c;}i++;}return TRUE;
}int main() {
/*6.63测试数据
RABCDEFGHI
3 2 0 1 0 0 3 0 0 0
*/CTree T;char levelstr[50];int num[50];int cnt;scanf("%s", levelstr);for (cnt=0; cnt<strlen(levelstr); cnt++) scanf("%d", &num[cnt]);CreateCTreeByLevelDegree(&T, levelstr, num);PreOrder(T);cnt = SubTreeDepth(T, T.r);printf("\nSubTreeDepth:%d\n", cnt);return 0;
}

这篇关于[树] 求树(孩子链表)的深度 与其他基本操作(严蔚敏《数据结构》6.63)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/705513

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

redis数据结构之String详解

《redis数据结构之String详解》Redis以String为基础类型,因C字符串效率低、非二进制安全等问题,采用SDS动态字符串实现高效存储,通过RedisObject封装,支持多种编码方式(如... 目录一、为什么Redis选String作为基础类型?二、SDS底层数据结构三、RedisObject

Java集合中的链表与结构详解

《Java集合中的链表与结构详解》链表是一种物理存储结构上非连续的存储结构,数据元素的逻辑顺序的通过链表中的引用链接次序实现,文章对比ArrayList与LinkedList的结构差异,详细讲解了链表... 目录一、链表概念与结构二、当向单链表的实现2.1 准备工作2.2 初始化链表2.3 打印数据、链表长

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499