Netty Review - ServerBootstrap源码解析

2024-02-13 10:04

本文主要是介绍Netty Review - ServerBootstrap源码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 概述
  • 源码分析
  • 小结

在这里插入图片描述

在这里插入图片描述


概述

在这里插入图片描述

   ServerBootstrap bootstrap = new ServerBootstrap();bootstrap.group(bossGroup, workerGroup).channel(NioServerSocketChannel.class).option(ChannelOption.SO_BACKLOG, 1024).childHandler(new ChannelInitializer<SocketChannel>() {@Overrideprotected void initChannel(SocketChannel ch) throws Exception {ChannelPipeline pipeline = ch.pipeline();//加入特殊分隔符分包解码器pipeline.addLast(new DelimiterBasedFrameDecoder(10240, Unpooled.copiedBuffer("_".getBytes())));//向pipeline加入解码器pipeline.addLast("decoder", new StringDecoder());//向pipeline加入编码器pipeline.addLast("encoder", new StringEncoder());//加入自己的业务处理handlerpipeline.addLast(new ChatServerHandler());}});

这段代码使用Netty构建了一个服务器。

  1. ServerBootstrap bootstrap = new ServerBootstrap(); - 创建一个ServerBootstrap实例,用于启动服务器。

  2. bootstrap.group(bossGroup, workerGroup) - 指定了服务器使用的两个EventLoopGroup,分别是bossGroup和workerGroup。其中,bossGroup用于接受传入的连接,而workerGroup用于处理已接受连接的流量。

  3. bootstrap.channel(NioServerSocketChannel.class) - 指定了服务器的Channel类型为NioServerSocketChannel,这表示使用NIO进行网络通信。

  4. bootstrap.option(ChannelOption.SO_BACKLOG, 1024) - 设置服务器的配置选项。在这里,设置了SO_BACKLOG,表示服务器套接字的连接队列大小为1024。

  5. bootstrap.childHandler(new ChannelInitializer<SocketChannel>() {...}) - 指定了当一个新的连接被接受时,所要执行的ChannelInitializer。这个匿名内部类用于配置新接受的Channel的ChannelPipeline,即为每个新接受的连接设置处理器。

  6. pipeline.addLast(new DelimiterBasedFrameDecoder(10240, Unpooled.copiedBuffer("_".getBytes()))) - 向ChannelPipeline中添加了一个DelimiterBasedFrameDecoder,用于根据特殊分隔符进行分包解码,这里的特殊分隔符是下划线"_”。

  7. pipeline.addLast("decoder", new StringDecoder()) - 向ChannelPipeline中添加了一个StringDecoder,用于将接收到的ByteBuf解码为字符串。

  8. pipeline.addLast("encoder", new StringEncoder()) - 向ChannelPipeline中添加了一个StringEncoder,用于将字符串编码为ByteBuf。

  9. pipeline.addLast(new ChatServerHandler()) - 向ChannelPipeline中添加了一个ChatServerHandler,这是自定义的业务处理Handler,用于处理接收到的消息。

总的来说,这段代码创建了一个基于Netty的服务器,配置了服务器的事件处理流程,包括接受连接、解码、编码和业务处理。


源码分析

ServerBootstrap bootstrap = new ServerBootstrap();

ServerBootstrap类的构造函数。在这个构造函数中,没有参数,它是一个默认构造函数。

bootstrap.group(bossGroup, workerGroup)

这段代码是ServerBootstrap类中的group方法的实现。

/*** Set the {@link EventLoopGroup} for the parent (acceptor) and the child (client). These* {@link EventLoopGroup}'s are used to handle all the events and IO for {@link ServerChannel} and* {@link Channel}'s.*/
public ServerBootstrap group(EventLoopGroup parentGroup, EventLoopGroup childGroup) {// 调用父类的group方法,设置父EventLoopGroupsuper.group(parentGroup);// 检查子EventLoopGroup是否为空,如果为空则抛出NullPointerExceptionif (childGroup == null) {throw new NullPointerException("childGroup");}// 检查是否已经设置了子EventLoopGroup,如果已经设置了则抛出IllegalStateExceptionif (this.childGroup != null) {throw new IllegalStateException("childGroup set already");}// 将传入的子EventLoopGroup赋值给成员变量childGroupthis.childGroup = childGroup;// 返回ServerBootstrap实例,用于链式调用return this;
}

这段代码的作用是设置ServerBootstrap的父(acceptor)和子(client)EventLoopGroup。这两个EventLoopGroup分别用于处理服务器端(acceptor)和客户端(client)的事件和IO操作。具体来说,这个方法会将传入的父EventLoopGroup设置给父类AbstractBootstrap,并将传入的子EventLoopGroup赋值给ServerBootstrap的成员变量childGroup。

在方法的实现中,

  • 首先调用了父类的group方法来设置父EventLoopGroup。
  • 然后,检查传入的子EventLoopGroup是否为空,如果为空则抛出NullPointerException。接着,检查是否已经设置了子EventLoopGroup,如果已经设置了则抛出IllegalStateException。
  • -最后,将传入的子EventLoopGroup赋值给成员变量childGroup,并返回ServerBootstrap实例,以支持链式调用。

总的来说,这段代码的目的是为ServerBootstrap设置父和子EventLoopGroup,以便于处理服务器和客户端的事件和IO操作,并提供了异常处理机制以确保参数的有效性。


我们看下 调用父类的group方法,设置父EventLoopGroup

super.group(parentGroup);

这段代码是一个泛型方法,通常用于在Netty的Bootstrap或ServerBootstrap中设置用于处理事件的EventLoopGroup。

/*** The {@link EventLoopGroup} which is used to handle all the events for the to-be-created* {@link Channel}*/
public B group(EventLoopGroup group) {// 检查传入的EventLoopGroup是否为空,如果为空则抛出NullPointerExceptionif (group == null) {throw new NullPointerException("group");}// 检查是否已经设置了EventLoopGroup,如果已经设置了则抛出IllegalStateExceptionif (this.group != null) {throw new IllegalStateException("group set already");}// 将传入的EventLoopGroup赋值给成员变量groupthis.group = group;// 返回调用该方法的实例,以支持链式调用return self();
}

这个方法主要用于设置用于处理事件的EventLoopGroup,它会将传入的EventLoopGroup赋值给成员变量group。

在方法的实现中,

  • 首先检查传入的EventLoopGroup是否为空,如果为空则抛出NullPointerException。
  • 然后,检查是否已经设置了EventLoopGroup,如果已经设置了则抛出IllegalStateException。
  • 最后,将传入的EventLoopGroup赋值给成员变量group,并返回调用该方法的实例,以支持链式调用。

总的来说,这段代码的作用是为Netty的Bootstrap或ServerBootstrap设置EventLoopGroup,以便于处理事件,并提供了异常处理机制以确保参数的有效性。


channel(NioServerSocketChannel.class)

这段代码是一个泛型方法,用于设置用于创建Channel实例的Class对象。

/*** The {@link Class} which is used to create {@link Channel} instances from.* You either use this or {@link #channelFactory(io.netty.channel.ChannelFactory)} if your* {@link Channel} implementation has no no-args constructor.*/
public B channel(Class<? extends C> channelClass) {// 检查传入的channelClass是否为空,如果为空则抛出NullPointerExceptionif (channelClass == null) {throw new NullPointerException("channelClass");}// 调用channelFactory方法,传入一个ReflectiveChannelFactory实例,该实例用于通过反射创建Channel实例return channelFactory(new ReflectiveChannelFactory<C>(channelClass));
}

这个方法主要用于设置用于创建Channel实例的Class对象。它接受一个Class对象作为参数,并将其传递给channelFactory方法。

在这个方法内部,会创建一个ReflectiveChannelFactory实例,并将传入的Class对象作为参数传递给它。

在方法的实现中,

  • 首先检查传入的channelClass是否为空,如果为空则抛出NullPointerException。
  • 然后,创建一个ReflectiveChannelFactory实例,并将传入的Class对象作为参数传递给它。
  • 最后,调用channelFactory方法,将ReflectiveChannelFactory实例传递给它,并返回调用该方法的实例,以支持链式调用。

总的来说,这段代码的作用是为Netty的Bootstrap或ServerBootstrap设置用于创建Channel实例的Class对象,并提供了异常处理机制以确保参数的有效性。


new ReflectiveChannelFactory<C>(channelClass)

这段代码是ReflectiveChannelFactory类的构造函数实现。它接受一个Class对象作为参数,并使用反射机制获取该类的公共无参数构造方法。让我们逐步解释它:

public ReflectiveChannelFactory(Class<? extends T> clazz) {// 检查传入的clazz是否为空,如果为空则抛出NullPointerExceptionObjectUtil.checkNotNull(clazz, "clazz");try {// 使用反射获取传入的类的公共无参数构造方法this.constructor = clazz.getConstructor();} catch (NoSuchMethodException e) {// 如果获取构造方法失败,则抛出IllegalArgumentException异常throw new IllegalArgumentException("Class " + StringUtil.simpleClassName(clazz) +" does not have a public non-arg constructor", e);}
}

这个构造函数的作用是初始化ReflectiveChannelFactory实例。

它接受一个Class对象作为参数,该Class对象表示要实例化的Channel类。在构造函数内部,

  • 首先检查传入的Class对象是否为空,如果为空则抛出NullPointerException。
  • 然后,使用反射机制尝试获取传入类的公共无参数构造方法。如果获取构造方法失败,则抛出IllegalArgumentException异常,指示传入的类没有公共无参数构造方法。

总的来说,这段代码的作用是为ReflectiveChannelFactory类创建一个实例,并在构造函数中使用反射机制获取要实例化的Channel类的构造方法。

在这里插入图片描述

@Override
public T newChannel() {try {// 使用之前获取的构造方法实例化新的Channel对象return constructor.newInstance();} catch (Throwable t) {// 如果实例化过程中出现异常,则抛出ChannelException异常throw new ChannelException("Unable to create Channel from class " + constructor.getDeclaringClass(), t);}
}

/*** @deprecated Use {@link #channelFactory(io.netty.channel.ChannelFactory)} instead.*/
@Deprecated
public B channelFactory(ChannelFactory<? extends C> channelFactory) {// 检查传入的channelFactory是否为空,如果为空则抛出NullPointerExceptionif (channelFactory == null) {throw new NullPointerException("channelFactory");}// 检查是否已经设置了channelFactory,如果已经设置了则抛出IllegalStateExceptionif (this.channelFactory != null) {throw new IllegalStateException("channelFactory set already");}// 将传入的channelFactory赋值给成员变量channelFactorythis.channelFactory = channelFactory;return self();
}

在这里插入图片描述


option(ChannelOption.SO_BACKLOG, 1024)

这段代码定义了一个方法,用于为创建的Channel实例设置ChannelOption。

/*** Allow to specify a {@link ChannelOption} which is used for the {@link Channel} instances once they got* created. Use a value of {@code null} to remove a previous set {@link ChannelOption}.*/
public <T> B option(ChannelOption<T> option, T value) {// 检查传入的option是否为空,如果为空则抛出NullPointerExceptionif (option == null) {throw new NullPointerException("option");}// 如果value为空,则从options中移除之前设置的optionif (value == null) {synchronized (options) {options.remove(option);}} else {// 否则,将option和对应的value放入options中synchronized (options) {options.put(option, value);}}// 返回调用该方法的实例,以支持链式调用return self();
}

这个方法的作用是允许指定一个ChannelOption,该选项在创建Channel实例后使用。如果value为null,则表示要移除之前设置的ChannelOption。否则,将option和对应的value放入options中。

在方法的实现中,

  • 首先检查传入的option是否为空,如果为空则抛出NullPointerException。
  • 然后,如果value为null,则从options中移除之前设置的option;否则,将option和对应的value放入options中。
  • 最后,返回调用该方法的实例,以支持链式调用。

这个方法的灵活性在于它允许用户根据需要设置或删除特定的ChannelOption,以满足不同场景的需求。

在这里插入图片描述


childHandler()

这段代码定义了一个方法,用于设置用于处理连接到ServerBootstrap的每个子Channel的ChannelHandler。

/*** Set the {@link ChannelHandler} which is used to serve the request for the {@link Channel}'s.*/
public ServerBootstrap childHandler(ChannelHandler childHandler) {// 检查传入的childHandler是否为空,如果为空则抛出NullPointerExceptionif (childHandler == null) {throw new NullPointerException("childHandler");}// 将传入的childHandler赋值给成员变量childHandlerthis.childHandler = childHandler;// 返回ServerBootstrap实例,以支持链式调用return this;
}

这个方法的作用是设置用于处理连接到ServerBootstrap的每个子Channel的ChannelHandler。传入的ChannelHandler将会被添加到每个新创建的子Channel的ChannelPipeline中,用于处理该子Channel的所有事件。

在方法的实现中,

  • 首先检查传入的childHandler是否为空,如果为空则抛出NullPointerException。
  • 然后,将传入的childHandler赋值给成员变量childHandler。
  • 最后,返回ServerBootstrap实例,以支持链式调用。

这种设计模式允许用户通过链式调用一系列方法来配置ServerBootstrap的参数,从而更加简洁和灵活地构建Netty服务器。


小结

ServerBootstrap是Netty中用于创建服务器端应用程序的引导类。它的设计目的是提供一种简洁、灵活的方式来配置和启动服务器,并处理与客户端的连接。

以下是ServerBootstrap的设计要点总结:

  1. 引导配置链式调用:ServerBootstrap类提供了一系列方法,允许用户通过链式调用来配置服务器的各种参数,如设置EventLoopGroup、Channel类型、Channel选项、ChannelHandler等。这种设计模式使得配置过程更加简洁和灵活。

  2. EventLoopGroup的配置:通过group方法,用户可以设置用于处理服务器端连接和客户端连接的EventLoopGroup。通常,一个用于接受连接的bossGroup和一个用于处理连接请求的workerGroup会被设置。

  3. Channel类型的设置:用户可以通过channel方法设置用于创建Channel实例的类型,例如NioServerSocketChannel.class。这决定了服务器将使用的底层传输协议。

  4. Channel选项的设置:option/childOption方法允许用户为创建的Channel实例设置各种选项,如SO_BACKLOG、TCP_NODELAY等。

  5. ChannelHandler的配置:通过childHandler方法,用户可以设置用于处理连接到服务器的每个子Channel的ChannelHandler。这些ChannelHandler将被添加到每个新创建的子Channel的ChannelPipeline中,用于处理子Channel的所有事件。

  6. 灵活性和可扩展性:ServerBootstrap的设计允许用户根据具体需求灵活地配置服务器的各种参数,同时也提供了可扩展的接口和回调机制,使得用户可以根据需要自定义处理逻辑。

总的来说,ServerBootstrap的设计通过提供一系列简洁而灵活的配置方法,以及可扩展的接口和回调机制,使得用户能够轻松地构建高性能、可定制的服务器应用程序。
在这里插入图片描述

这篇关于Netty Review - ServerBootstrap源码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/705217

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM