C语言中位域(bit fields)的可移植问题

2024-02-13 07:32

本文主要是介绍C语言中位域(bit fields)的可移植问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

网上有文章说C语言的“位域”(bit fields)有可移植性的问题,原因是不同的编译器对位域的实现不同。

  我决定用实验验证一下。

  一、 实验过程:

  1. 准备实验程序

  这 是谭浩强C语言课本上第12章12.2节的位域示例程序:


  main() {
  struct bs
  {
  unsigned a:1;
  unsigned b:3;
  unsigned c:4;
  } bit,*pbit;
  bit.a = 1;
  bit.b = 7;
  bit.c = 15;
  printf("%d,%d,%d\n", bit.a, bit.b, bit.c);
  pbit = &bit;
  pbit->a = 0;
  pbit->b &= 3;
  pbit->c |= 1;
  printf("%d,%d,%d\n", pbit->a, pbit->b, pbit->c);
  }

  我将它改写成:


  #include
  int main(int argc, char** argv)
  {
  struct bitfields
  {
  unsigned long a:1;
  unsigned long b:3;
  unsigned long c:4;
  unsigned long d:8;
  unsigned long e:16;
  unsigned long f:32;
  };
  union
  {
  struct bitfields bit;
  unsigned long longhex;
  unsigned long long longlonghex;
  } union_bit;
  union_bit.bit.a = 1;
  union_bit.bit.b = 7;
  union_bit.bit.c = 8;
  union_bit.bit.d = 0x70;
  union_bit.bit.e = 0x5060;
  union_bit.bit.f = 0x10203040;
  printf("a=%d b=%d c=%d d=0x%x\ne=0x%x f=0x%lx\n", union_bit.bit.a,
  union_bit.bit.b, union_bit.bit.c, union_bit.bit.d, union_bit.bit.e, union_bit.bit.f);
  printf("*(unsigned long*)(&bit) = %lx\n", union_bit.longhex);
  printf("*(unsigned long long*)(&bit) = %llx\n", union_bit.longlonghex);
  union_bit.bit.a = 0;
  union_bit.bit.b = 3;
  union_bit.bit.c = 9;
  printf("a=%d b=%d c=%d d=0x%x\ne=0x%x f=0x%lx\n", union_bit.bit.a,
  union_bit.bit.b, union_bit.bit.c, union_bit.bit.d, union_bit.bit.e, union_bit.bit.f);
  printf("*(unsigned long*)(&bit) = %lx\n", union_bit.longhex);
  printf("*(unsigned long long*)(&bit) = %llx\n", union_bit.longlonghex);
  printf("sizeof unsigned long = %d\n", sizeof(unsigned long));
  printf("sizeof struct bitfields = %d\n", sizeof(struct bitfields));
  return 0;
  }

  2. 在不同的软硬件环境中运行实验程序,得到结果

  1) 运行环境一:

  硬件:1颗双核单线程的Pentium E5300, 主频2.60 GHz, 3 GB内存

  软件:Fedora 12(内核2.6.31.5), gcc 4.4.2, glibc 2.11, 32位OS ,32位C编译器

  运行结果:


  a=1 b=7 c=8 d=0x70
  e=0x5060 f=0x10203040
  *(unsigned long*)(&bit) = 5060708f
  *(unsigned long long*)(&bit) = 102030405060708f
  a=0 b=3 c=9 d=0x70
  e=0x5060 f=0x10203040
  *(unsigned long*)(&bit) = 50607096
  *(unsigned long long*)(&bit) = 1020304050607096
  sizeof unsigned long = 4
  sizeof struct bitfields = 8

  2) 运行环境二:

  硬件:1颗UltraSPARC T1, 主频1.0 GHz, 8核心×每核4线程, 64位32线程CPU, 8 GB内存

  软件:Solaris 10 Update 3 for SPARC, 64位OS, 32位C编译器

  运行结果:

 


 a=1 b=7 c=8 d=0x70
  e=0x5060 f=0x10203040
  *(unsigned long*)(&bit) = f8705060
  *(unsigned long long*)(&bit) = f870506010203040
  a=0 b=3 c=9 d=0x70
  e=0x5060 f=0x10203040
  *(unsigned long*)(&bit) = 39705060
  *(unsigned long long*)(&bit) = 3970506010203040
  sizeof unsigned long = 4
  sizeof struct bitfields = 8

3) 运行环境三:

  硬件:1 颗双核单线程的Intel Xeon 3050芯片, CPU 主频为2.13 GHz, 配置8 GB内存

  软件:FreeBSD 6.2, 64位OS, 64位C编译器

  运行结果:


  a=1 b=7 c=8 d=0x70
  e=0x5060 f=0x7fff10203040
  *(unsigned long*)(&bit) = 102030405060708f
  *(unsigned long long*)(&bit) = 102030405060708f
  a=0 b=3 c=9 d=0x70
  e=0x5060 f=0x7fff10203040
  *(unsigned long*)(&bit) = 1020304050607096
  *(unsigned long long*)(&bit) = 1020304050607096
  sizeof unsigned long = 8
  sizeof struct bitfields = 8

  二、 实验结果分析:

  在32位x86系统上,位域对应的二进制位为:

  ffffffff ffffffff ffffffff ffffffff eeeeeeee eeeeeeee dddddddd ccccbbba

  因为long类型是32位,所以把整个bitfields作为unsigned long输出时,输出了整个bitfields的一部分:

  eeeeeeee eeeeeeee dddddddd ccccbbba

  在64位SPARC系统上,位域对应的二进制位为:

  abbbcccc dddddddd eeeeeeee eeeeeeee ffffffff ffffffff ffffffff ffffffff

  因为long类型是32位,所以把整个bitfields作为unsigned long输出时,也输出了整个bitfields的一部分:

  abbbcccc dddddddd eeeeeeee eeeeeeee

  在64位x86系统上,位域对应的二进制位为:

  ffffffff ffffffff ffffffff ffffffff eeeeeeee eeeeeeee dddddddd ccccbbba

  因为long类型是64位,在printf的时候"f=0x%lx"读取到了bitfields以外的内存,所以导致f=0x7fff10203040这样的结果。

  并且,把整个bitfields作为unsigned long输出时,输出了整个bitfields的全部内容。

  三、 实验结论:

  1. 机器的字长和字节序,会直接影响到“位域”的值。

  2. long类型,在64位编译器中是64位的数据类型;而在32位编译器中是32位数据类型。

  3. long long 数据类型,在32位编译器和64位编译器中,都是64位类型。

  注:关于字节序的说明:

  大端字节(big endian)是指低地址存放最高有效位(MSB: Most Significant Bit);

  小端字节(little endian)是低地址存放最低有效位(LSB: Least Significant Bit)。

  用文字说明可能比较抽象,下面用图像加以说明。

  比如数字0x0A0B0C0D在两种不同字节序CPU中的存储顺序如下所示:

  Big Endian

  低地址 ------> 高地址

  +----+----+----+----+

  | 0A | 0B | 0C | 0D |

  +----+----+----+----+

  Little Endian

  低地址 ------> 高地址

  +----+----+----+----+

  | 0D | 0C | 0B | 0A |

  +----+----+----+----+

  Intel 80x86, MOS Technology 6502, Z80, VAX, PDP-11 处理器为 Little endian。

  Motorola 6800, Motorola 68000, PowerPC 970, System/370, SPARC(除V9外) 处理器为 Big endian。

  ARM, PowerPC (除PowerPC 970外), DEC Alpha, SPARC V9, MIPS, PA-RISC, Intel IA64 的字节序是可配置的。

  为什么要注意字节序的问题呢?你可能这么问。当然,如果你写的程序只在单机环境下面运行,并且不和别人的程序打交道,那么你完全可以忽略字节序的存在。但是,如果你的程序要跟别人的程序产生交互呢?在这里我想说说两种语言。C/C++语言编写的程序里数据存储顺序是跟编译平台所在的CPU相关的,而JAVA编写的程序则唯一采用big endian方式来存储数据。试想,如果你用C/C++语言在x86平台下编写的程序跟别人的JAVA程序互通时会产生什么结果?就拿上面的0x12345678来说,你的程序传递给别人的一个数据,将指向0x12345678的指针传给了JAVA程序,由于JAVA采取big endian方式存储数据,很自然的它会将你的数据翻译为0x78563412。什么?竟然变成另外一个数字了?是的,就是这种后果。因此,在你的C程序传给JAVA程序之前有必要进行字节序的转换工作。

  无独有偶,所有网络协议也都是采用big endian的方式来传输数据的。所以有时我们也会把big endian方式称之为网络字节序。当两台采用不同字节序的主机通信时,在发送数据之前都必须经过字节序的转换成为网络字节序后再进行传输。

这篇关于C语言中位域(bit fields)的可移植问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/704893

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe