linux中 probe函数的何时调用的?

2024-02-12 11:32
文章标签 linux 函数 调用 probe

本文主要是介绍linux中 probe函数的何时调用的?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

linux中 probe函数何时调用的

         所以的驱动教程上都说:只有设备和驱动的名字匹配,BUS就会调用驱动的probe函数,但是有时我们要看看probe函数里面到底做了什么,还有传递给probe函数的参数我们就不知道在哪定义(反正不是我们在驱动里定义的),如果不知道传递进的参数,去看probe函数总是感觉不求甚解的样子(你对系统不求甚解,系统也会对你的要求不求甚解的),心里对自己写出的程序没底,保不齐那天来个bug,就悲剧了。

         这里以static int__devinit sst25l_probe(struct spi_device *spi)为例看看传递进的参数structspi_device *spi到底是什么,在哪定义,什么时候定义,定义了有什么用…?(本着“five W and H”的原则打破沙锅问到底)。首先struct spi_device *spi不是我们定义的驱动里定义的;其次在read,write等函数里都有struct spi_device *spi的影子,不过不是直接传递进去的,而是通过传递进去struct mtd_info *mtd,然后to_sst25l_flash(mtd),即container_of()出包含mtd的struct sst25l_flash *flash,其中flash里的第一个成员就是structspi_device *spi,而此成员的赋值就是将传递给probe中的struct spi_device *spi赋值给struct sst25l_flash *flash的,有代码为证:

static int __devinit sst25l_probe(structspi_device *spi)

{

         structflash_info *flash_info;

         structsst25l_flash *flash;

         ……

         flash->spi = spi;// 将structspi_device *spi赋值给struct sst25l_flash *flash

         mutex_init(&flash->lock);

         dev_set_drvdata(&spi->dev,flash);// &spi->dev ->p->driver_data = flash保持flash

         ……

}

         所以搞清楚structspi_device *spi的来源是搞清楚设备驱动与主控驱动的联系纽带的关键之一,当然要首先搞清楚probe函数什么时候调用才能搞清楚struct spi_device *spi怎么传递的,其重要性不言而喻(虽然言了很多,^-^,有点唐僧了)。我们先从驱动的init开始入手,毕竟这是驱动注册开始的地方,也是一系列后续操作引发的地方:

static int __init sst25l_init(void)

{

         returnspi_register_driver(&sst25l_driver);

}

         里面只有一个函数,最喜欢这样的函数了:

int spi_register_driver(struct spi_driver*sdrv)

{

         sdrv->driver.bus= &spi_bus_type;

         if(sdrv->probe)

                   sdrv->driver.probe= spi_drv_probe;

         if(sdrv->remove)

                   sdrv->driver.remove= spi_drv_remove;

         if(sdrv->shutdown)

                   sdrv->driver.shutdown= spi_drv_shutdown;

         return driver_register(&sdrv->driver);

}

         前面都是赋值,直接最后一个语句:

int driver_register(struct device_driver*drv)

{

         intret;

         structdevice_driver *other;

         ……

         ret = bus_add_driver(drv);

         if(ret)

                   returnret;

         ret= driver_add_groups(drv, drv->groups);

         if(ret)

                   bus_remove_driver(drv);

         returnret;

}

         bus_add_driver(drv)看着就像“好人”:

int bus_add_driver(struct device_driver*drv)

{

         structbus_type *bus;

         structdriver_private *priv;

         interror = 0;

         ……

         if(drv->bus->p->drivers_autoprobe) {

                   error= driver_attach(drv);

                   if(error)

                            goto out_unregister;

         }

         ……

}

         driver_attach看着也很“友善”(函数名中带get,init的一般都不是,如果里面有几个“友善”的,一首歌中已经告诉了我们解决的办法:“xx就像偶尔拨不通的电话号码,多试几次总会回答,……”,如果网上找不到,只好挨个跟踪了,我就这样找的,笨人只好采取笨办法,也是没有办法的办法了):

int driver_attach(struct device_driver*drv)

{

         returnbus_for_each_dev(drv->bus, NULL, drv, __driver_attach);

}

         里面只有一个函数,goon:

int bus_for_each_dev(struct bus_type *bus,struct device *start, void *data, int (*fn)(struct device *, void *))

{

         structklist_iter i;

         structdevice *dev;

         interror = 0;

        

         if(!bus)

                  return -EINVAL;

        

         klist_iter_init_node(&bus->p->klist_devices,&i, (start ? &start->p->knode_bus : NULL));

         while((dev = next_device(&i)) && !error)

                  error = fn(dev,data);

         klist_iter_exit(&i);

         returnerror;

}

         看到这里好像没有我们想要找的attach,只执行了个fn()函数,肿么回事?到回头看看哪里漏了,在bus_for_each_dev中传递了个 __driver_attach,也就是在bus_for_each_dev执行了__driver_attach(dev, data),那么它里面到底执行了什么?

static int __driver_attach(struct device*dev, void *data)

{

         structdevice_driver *drv = data;

        

         if (!driver_match_device(drv, dev))

                  return 0;

        

         if(dev->parent)/* Needed for USB */

                   device_lock(dev->parent);

         device_lock(dev);

         if(!dev->driver)

                   driver_probe_device(drv, dev);

         device_unlock(dev);

         if(dev->parent)

                   device_unlock(dev->parent);

        

         return0;

}

         有个driver_probe_device(drv,dev),继续跟踪:

int driver_probe_device(structdevice_driver *drv, struct device *dev)

{

         intret = 0;

         ……

         ret = really_probe(dev, drv);

         pm_runtime_put_sync(dev);

 

         returnret;

}

         有个really_probe(dev,drv),linux神马的就喜欢这样,经常一个函数传递给另一函数,后一个函数就是在前一个函数前加“do_”、“really_”、“__”,还经常的就是宏定义的或inline的。

static int really_probe(struct device *dev,struct device_driver *drv)

{

         intret = 0;

         ……

         if(dev->bus->probe) {

                   ret = dev->bus->probe(dev);

                   if(ret)

                            gotoprobe_failed;

         }else if (drv->probe) {

                   ret = drv->probe(dev);

                   if(ret)

                            gotoprobe_failed;

         }

         ……

         returnret;

}

         这里如果有总线上的probe函数就调用总线的probe函数,如果没有则调用drv的probe函数。

         在static int__driver_attach(struct device *dev, void *data)中先调用了driver_match_device(drv,dev),用于匹配,成功才继续执行,否则直接返回了。driver_match_device(drv, dev)中:

static inline intdriver_match_device(struct device_driver *drv,

                                           struct device *dev)

{

         returndrv->bus->match ? drv->bus->match(dev, drv) : 1;

}

         即如果match函数的指针不为空,则执行此bus的match函数,也就是为什么资料上老是说总线负责匹配设备和驱动了。这里也传递了参数struct device *dev,到底这个dev来自何方,会在下一篇文章中继续跟踪。

         本文章参考:http://blog.chinaunix.net/space.php?uid=15887868&do=blog&id=2758294,对原作者表示感谢!

这篇关于linux中 probe函数的何时调用的?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/702503

相关文章

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

详解Linux中常见环境变量的特点与设置

《详解Linux中常见环境变量的特点与设置》环境变量是操作系统和用户设置的一些动态键值对,为运行的程序提供配置信息,理解环境变量对于系统管理、软件开发都很重要,下面小编就为大家详细介绍一下吧... 目录前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变

Linux系统中的firewall-offline-cmd详解(收藏版)

《Linux系统中的firewall-offline-cmd详解(收藏版)》firewall-offline-cmd是firewalld的一个命令行工具,专门设计用于在没有运行firewalld服务的... 目录主要用途基本语法选项1. 状态管理2. 区域管理3. 服务管理4. 端口管理5. ICMP 阻断

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流

Linux中修改Apache HTTP Server(httpd)默认端口的完整指南

《Linux中修改ApacheHTTPServer(httpd)默认端口的完整指南》ApacheHTTPServer(简称httpd)是Linux系统中最常用的Web服务器之一,本文将详细介绍如何... 目录一、修改 httpd 默认端口的步骤1. 查找 httpd 配置文件路径2. 编辑配置文件3. 保存

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主