sheng的学习笔记-网络爬虫scrapy框架

2024-02-12 10:12

本文主要是介绍sheng的学习笔记-网络爬虫scrapy框架,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基础知识:

scrapy介绍

何为框架,就相当于一个封装了很多功能的结构体,它帮我们把主要的结构给搭建好了,我们只需往骨架里添加内容就行。scrapy框架是一个为了爬取网站数据,提取数据的框架,我们熟知爬虫总共有四大部分,请求、响应、解析、存储,scrapy框架都已经搭建好了。scrapy是基于twisted框架开发而来,twisted是一个流行的事件驱动的python网络框架,scrapy使用了一种非阻塞的代码实现并发的

整体架构图

各组件:

数据处理流程

项目示例

环境搭建

下载依赖包

pip install wheel
下载twisted:https://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted
安装twisted:pip install Twisted-17.1.0-cp36m-win_amd64.whl   (这个文件的路劲)
pip install pywin32
pip install scrapy
测试:在终端输入scrapy指令,没有报错表示安装成功
在anaconda中,可以直接装scrapy,会自动把依赖的包都装好

pyopenssl要改成22.0.0版本,否则调用request的时候报错,anaconda会自动改一下依赖的别的包的版本

创建项目

创建项目叫spider

1、打开pycharm的terminal
2、scrapy startproject spider    创建项目
3、cd spider
4、scrapy genspider douban www.xxx.com  创建爬虫程序  
5、需要有main.py里面的输出,则修改settings.py里面的ROBOTSTXT_OBEY = True改为False
6、scrapy crawl main
  不需要额外的输出则执行scrapy crawl main --nolog
   或者在settings.py里面添加LOG_LEVEL='ERROR',main.py有错误代码会报错(不添加有错误时则不会报错)(常用)

打开spider项目,里面有个spiders文件夹,称为爬虫文件夹,在这里放爬虫业务文件

项目代码

在douban.py里,写爬虫程序

此处是爬虫业务逻辑,爬到网站地址,对于爬虫返回结果的解析,在parse中做

根据应答的数据,解析,可以用xpath或者css解析,找到对应的数据

import scrapy
from scrapy import Selector, Request
from scrapy.http import HtmlResponsefrom spider.items import MovieItemclass DoubanSpider(scrapy.Spider):name = 'douban'allowed_domains = ['movie.douban.com']start_urls = ['https://movie.douban.com/top250']def start_requests(self):for page in range(10):yield Request(url=f'https://movie.douban.com/top250?start={page * 25}&filter=')def parse(self, response: HtmlResponse, **kwargs):sel = Selector(response)list_items = sel.css("#content > div > div.article > ol > li")for list_item in list_items:movie_item = MovieItem()movie_item['title'] = list_item.css('span.title::text').extract_first()movie_item['rank'] = list_item.css('span.rating_num::text').extract_first()movie_item['subject'] = list_item.css('span.inq::text').extract_first()yield movie_item# href_list = sel.css('div.paginator > a::attr(href)')# for href in href_list:#     url =  response.urljoin(href.extract())

其中,将返回的值转化为对象,需要在item.py里改一下代码

# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.htmlimport scrapy#爬虫获取到到数据需要组装成item对象
class MovieItem(scrapy.Item):# define the fields for your item here like:# name = scrapy.Field()title = scrapy.Field()rank = scrapy.Field()subject = scrapy.Field()

执行爬虫

执行工程:scrapy crawl douban -o douban.csv (运行douban爬虫文件,并将结果生成到douban.csv里面)
如果被识别了是爬虫程序,在setting中设置一下user agent的值

USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.82 Safari/537.36' # User-Agent字符串

保存数据

默认可以支持保存到csv,json

保存到excel

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html# useful for handling different item types with a single interface
from itemadapter import ItemAdapter
import openpyxl#将爬虫返回的数据持久化,先存放到excel
class ExcelPipeline:# 创建excel工作簿和工作表def __init__(self):self.wb = openpyxl.Workbook()# wb.create_sheet()self.ws = self.wb.active  #激活工作表self.ws.title = "Top250"   #改名字self.ws.append(('标题','评分','主题'))def close_spider(self,spider):self.wb.save('电影数据.xlsx')# item就是数据def process_item(self, item, spider):title = item.get('title','')rank = item.get('rank', '')subject = item.get('subject', '')self.ws.append((title,rank,subject))return item

在setting.py中改一下配置,找到这个注释,去掉注释

前面是管道名称,如果多个管道,在这里配置多个值,数字小的先执行,数字大的后执行

值要和类名字一致,我改了名字

ITEM_PIPELINES = {'spider.pipelines.ExcelPipeline': 300,
}

运行命令。  scrapy crawl douban 

保存到数据库mysql

新增一个mysql的持久化逻辑,init的时候创建连接,process的时候插入,close的时候提交和关闭连接

建表语句

create table tb_top_move(
movie_id INT AUTO_INCREMENT PRIMARY KEY comment '编号',
title varchar(50) not null comment '标题',
rating decimal(3,1) not null comment '评分',
subject varchar(200) not null comment '主题'
) engine=innodb comment='Top电影表'
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html# useful for handling different item types with a single interface
from itemadapter import ItemAdapter
import openpyxl
import pymysql#将爬虫返回的数据持久化,先存放到mysql
class MysqlPipeline:# 创建excel工作簿和工作表def __init__(self):#todo 设置db信息self.conn = pymysql.connect(host='127.0.0.1',port=,user='',password='',database='',charset='utf8mb4')self.cursor = self.conn.cursor()def close_spider(self,spider):self.conn.commit()self.conn.close()# item就是数据def process_item(self, item, spider):title = item.get('title', '')rank = item.get('rank', 0)subject = item.get('subject', '')self.cursor.execute('insert into tb_top_move(title,rating,subject) values (%s,%s,%s)',(title,rank,subject))return item#将爬虫返回的数据持久化,先存放到excel
class ExcelPipeline:# 创建excel工作簿和工作表def __init__(self):self.wb = openpyxl.Workbook()# wb.create_sheet()self.ws = self.wb.active  #激活工作表self.ws.title = "Top250"   #改名字self.ws.append(('标题','评分','主题'))def close_spider(self,spider):self.wb.save('电影数据.xlsx')# item就是数据def process_item(self, item, spider):title = item.get('title','')rank = item.get('rank', '')subject = item.get('subject', '')self.ws.append((title,rank,subject))return item

改下setting的配置

ITEM_PIPELINES = {'spider.pipelines.MysqlPipeline': 200,'spider.pipelines.ExcelPipeline': 300,
}

如果需要代理,可以用这种方式,在douban的py中修改

运行爬虫

scrapy crawl douban

多层爬虫

在爬了第一个页面,跟进内容爬第二个页面,比如在第一个汇总页面,想要知道《霸王别姬》中的时长和介绍,要点进去看到第二个页面

核心是douban.py中,parse函数yield返回的,是一个新的请求,并通过parse_detail作为回调函数进行第二层页面的解析

代码:

douban.py

import scrapy
from scrapy import Selector, Request
from scrapy.http import HtmlResponsefrom spider.items import MovieItemclass DoubanSpider(scrapy.Spider):name = 'douban'allowed_domains = ['movie.douban.com']start_urls = ['https://movie.douban.com/top250']def start_requests(self):for page in range(1):yield Request(url=f'https://movie.douban.com/top250?start={page * 25}&filter=')def parse(self, response: HtmlResponse, **kwargs):sel = Selector(response)list_items = sel.css("#content > div > div.article > ol > li")for list_item in list_items:detail_url = list_item.css("div.info > div.hd > a::attr(href)").extract_first()movie_item = MovieItem()movie_item['title'] = list_item.css('span.title::text').extract_first()movie_item['rank'] = list_item.css('span.rating_num::text').extract_first()movie_item['subject'] = list_item.css('span.inq::text').extract_first() or ''# yield movie_itemyield Request(url=detail_url, callback=self.parse_detail,cb_kwargs={'item':movie_item})# href_list = sel.css('div.paginator > a::attr(href)')# for href in href_list:#     url =  response.urljoin(href.extract())def parse_detail(self,response,**kwargs):movie_item = kwargs['item']sel = Selector(response)movie_item['duration']=sel.css('span[property="v:runtime"]::attr(content)').extract()movie_item['intro']=sel.css('span[property="v:summary"]::text').extract_first() or ''yield movie_item

/items.py

# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.htmlimport scrapy#爬虫获取到到数据需要组装成item对象
class MovieItem(scrapy.Item):# define the fields for your item here like:# name = scrapy.Field()title = scrapy.Field()rank = scrapy.Field()subject = scrapy.Field()duration = scrapy.Field()intro = scrapy.Field()

/pipelines.py

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html# useful for handling different item types with a single interface
from itemadapter import ItemAdapter
import openpyxl
import pymysql'''
建表语句
create table tb_top_move(
movie_id INT AUTO_INCREMENT PRIMARY KEY comment '编号',
title varchar(50) not null comment '标题',
rating decimal(3,1) not null comment '评分',
subject varchar(200) not null comment '主题',
duration int comment '时长',
intro varchar(10000) comment '介绍'
) engine=innodb comment='Top电影表'
'''#将爬虫返回的数据持久化,先存放到excel
class MysqlPipeline:# 创建excel工作簿和工作表def __init__(self):#todo 设置db信息self.conn = pymysql.connect(host='127.0.0.1',port=3306,user='lzs_mysql',password='lzs',database='mysql',charset='utf8mb4')self.cursor = self.conn.cursor()def close_spider(self,spider):self.conn.commit()self.conn.close()# item就是数据def process_item(self, item, spider):title = item.get('title', '')rank = item.get('rank', 0)subject = item.get('subject', '')duration = item.get('duration', '')intro = item.get('intro', '')self.cursor.execute('insert into tb_top_move(title,rating,subject,duration,intro) values (%s,%s,%s,%s,%s)',(title,rank,subject,duration,intro))return item#将爬虫返回的数据持久化,先存放到excel
class ExcelPipeline:# 创建excel工作簿和工作表def __init__(self):self.wb = openpyxl.Workbook()# wb.create_sheet()self.ws = self.wb.active  #激活工作表self.ws.title = "Top250"   #改名字self.ws.append(('标题','评分','主题'))def close_spider(self,spider):self.wb.save('电影数据.xlsx')# item就是数据def process_item(self, item, spider):title = item.get('title','')rank = item.get('rank', '')subject = item.get('subject', '')self.ws.append((title,rank,subject))return item

运行爬虫

scrapy crawl douban

中间件

中间件分为蜘蛛中间件和下载中间件

蜘蛛中间件一般不动

如果想要在请求中加上cookie,可以在中间件上的请求加上cookie信息

在middlewares.py类中,加上一个方法,获取cookie信息

修改middle的类

修改配置setting

参考文章:

02.使用Scrapy框架-1-创建项目_哔哩哔哩_bilibili

https://www.cnblogs.com/12345huangchun/p/10501673.html

Scrapy框架(高效爬虫)_scrapy爬虫框架-CSDN博客

这篇关于sheng的学习笔记-网络爬虫scrapy框架的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/702379

相关文章

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Python开发简易网络服务器的示例详解(新手入门)

《Python开发简易网络服务器的示例详解(新手入门)》网络服务器是互联网基础设施的核心组件,它本质上是一个持续运行的程序,负责监听特定端口,本文将使用Python开发一个简单的网络服务器,感兴趣的小... 目录网络服务器基础概念python内置服务器模块1. HTTP服务器模块2. Socket服务器模块

解决若依微服务框架启动报错的问题

《解决若依微服务框架启动报错的问题》Invalidboundstatement错误通常由MyBatis映射文件未正确加载或Nacos配置未读取导致,需检查XML的namespace与方法ID是否匹配,... 目录ruoyi-system模块报错报错详情nacos文件目录总结ruoyi-systnGLNYpe

Go语言网络故障诊断与调试技巧

《Go语言网络故障诊断与调试技巧》在分布式系统和微服务架构的浪潮中,网络编程成为系统性能和可靠性的核心支柱,从高并发的API服务到实时通信应用,网络的稳定性直接影响用户体验,本文面向熟悉Go基本语法和... 目录1. 引言2. Go 语言网络编程的优势与特色2.1 简洁高效的标准库2.2 强大的并发模型2.

Python Web框架Flask、Streamlit、FastAPI示例详解

《PythonWeb框架Flask、Streamlit、FastAPI示例详解》本文对比分析了Flask、Streamlit和FastAPI三大PythonWeb框架:Flask轻量灵活适合传统应用... 目录概述Flask详解Flask简介安装和基础配置核心概念路由和视图模板系统数据库集成实际示例Stre

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.