Wellner 1993快速自适应的图像二值化方法的提高 (Derek Bradley and Gerhard Roth 2007)

本文主要是介绍Wellner 1993快速自适应的图像二值化方法的提高 (Derek Bradley and Gerhard Roth 2007),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前面一种方案实际上还是存在一定的问题的, 就是这个避重就轻的初始g(n)值127*s(127表示0-255之间的中间值), 这个东西带来的最直接的问题就是边缘的效果在这个算法下是不咋地的。 其实从这个所谓的"Wellner 1993", 后人又做了很多的改进, 使之效率更高, 效果更好。比方说这个Derek Bradley和Gerhard Roth搞的这个所谓 Adaptive Thresholding Using the Integral Image 在这个网页

http://www.scs.carleton.ca/~roth/iit-publications-iti/docs/gerh-50002.pdf 可以看到一些他的踪迹。

 

这个算法的基本思想是这样的,为了打破原来算法的初始值问题以及扫描顺序的问题, 这里的像素二值化的时候, 直接使用周围矩形像素的颜色作比较,这样来判断像素值更科学。我们对算法的介绍从求和面积表(Summed-Area Table)开始. 这个求和面积表简单点说就是维护一张表, 表中的元素值就是它左上位置的所有像素的像素值和。(数学公式在这里编辑简直是噩梦!只能放图了无图无真相:))

示意图

左边就是原始像素值, 右边的就是累加得到的表, 比方说这个表里面的(2,2)位置的8就是通过2+3+3+0得到的, 而这个最大值28就是所有像素的累加和。得到这个和和我们的二值化有什么关联呢?前面我们提到了在新的这个算法里面像素的值以来于周围像素的颜色, 那周围像素的颜色如何表示呢? 我们可以通过这个表轻松获得, 且看下面一张图:

示意图2

这里的UL, LL, UR, LR表示的就是前面这个求和表里面的值, 如果我们要判断绿色区域中这个+号位置的值, 我们就要计算整个绿色区域的平均像素值, 如何计算呢? 有了新的表就方便了,右边其实给出了这个公式,这里的LR-UR-LL+UL就是整个绿色区域的像素值和。这个什么道理其实已经自己可以推断出来了, 如果还嫌这里不清楚的话,我们就给个更清楚的图:

示意图2

这个图和前面一样,但是如果还是用LR-UR-LL+UL来表示的话,这里就可以写成:

LR-UR-LL+UL = (A+B+C+D)-(A+B)-(A+C)+A = D, 这样就清楚很多了吧。 得到的这个值D就是D这个区域的像素值和, 那D中最中心的像素的颜色就可以用D/(widith*height)来做比较了。 所以算法的流程就是首先得到这个求和面积表, 其次遍历所有的像素, 然后以这些像素为中心点, 计算S*S大小的矩形的平均颜色, 用来和当前像素比较即可。这个流程可以说是相当精炼啊!这里依然用到了原来的S, T, 还保持了一致S是宽度的八分之一, 而T则是15,下面有一段我改过的实现代码:

[cpp]  view plain copy
  1. void adaptiveThreshold(unsigned char* input, unsigned char*& bin, int width, int height)  
  2. {  
  3.     int S = width >> 3;  
  4.     int T = 15;  
  5.       
  6.     unsigned long* integralImg = 0;  
  7.     int i, j;  
  8.     long sum=0;  
  9.     int count=0;  
  10.     int index;  
  11.     int x1, y1, x2, y2;  
  12.     int s2 = S/2;  
  13.       
  14.     bin = new unsigned char[width*height];  
  15.     // create the integral image  
  16.     integralImg = (unsigned long*)malloc(width*height*sizeof(unsigned long*));  
  17.     for (i=0; i<width; i++)  
  18.     {  
  19.         // reset this column sum  
  20.         sum = 0;  
  21.         for (j=0; j<height; j++)  
  22.         {  
  23.             index = j*width+i;  
  24.             sum += input[index];  
  25.             if (i==0)  
  26.                 integralImg[index] = sum;  
  27.             else  
  28.                 integralImg[index] = integralImg[index-1] + sum;  
  29.         }  
  30.     }  
  31.     // perform thresholding  
  32.     for (i=0; i<width; i++)  
  33.     {  
  34.         for (j=0; j<height; j++)  
  35.         {  
  36.             index = j*width+i;  
  37.             // set the SxS region  
  38.             x1=i-s2; x2=i+s2;  
  39.             y1=j-s2; y2=j+s2;  
  40.             // check the border  
  41.             if (x1 < 0) x1 = 0;  
  42.             if (x2 >= width) x2 = width-1;  
  43.             if (y1 < 0) y1 = 0;  
  44.             if (y2 >= height) y2 = height-1;  
  45.             count = (x2-x1)*(y2-y1);  
  46.             // I(x,y)=s(x2,y2)-s(x1,y2)-s(x2,y1)+s(x1,x1)  
  47.             sum = integralImg[y2*width+x2] -  
  48.                 integralImg[y1*width+x2] -  
  49.                 integralImg[y2*width+x1] +  
  50.                 integralImg[y1*width+x1];  
  51.             if ((long)(input[index]*count) < (long)(sum*(100-T)/100))  
  52.                 bin[index] = 0;  
  53.             else  
  54.                 bin[index] = 255;  
  55.         }  
  56.     }  
  57.     free (integralImg);  
  58. }  

这里也有一点效果图可以看看, 同时有和前面一个算法的比较:

 

原始1                                      wellnar算法                            最新

原始图1 wellnar 最新dm

 

 

还有一组:

ez_raw

wellnar:

wellnar

最新算法:

 

new

 

 

这些个贴图其实还不是特别的具体, 其实这个算法特别适用于光照强度变化很大的像素, 这里有些网页也给出了鲜明的对比:http://www.derekbradley.ca/AdaptiveThresholding/index.html 效果的差距还是很明显的。 总的来说这个算法实现简单, 效率很高,确实是不错的选择。 而且还很新!在07年的杂志上发表的,现在记录下来与君共勉之!

这篇关于Wellner 1993快速自适应的图像二值化方法的提高 (Derek Bradley and Gerhard Roth 2007)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/702277

相关文章

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

Conda虚拟环境的复制和迁移的四种方法实现

《Conda虚拟环境的复制和迁移的四种方法实现》本文主要介绍了Conda虚拟环境的复制和迁移的四种方法实现,包括requirements.txt,environment.yml,conda-pack,... 目录在本机复制Conda虚拟环境相同操作系统之间复制环境方法一:requirements.txt方法

Nginx 重写与重定向配置方法

《Nginx重写与重定向配置方法》Nginx重写与重定向区别:重写修改路径(客户端无感知),重定向跳转新URL(客户端感知),try_files检查文件/目录存在性,return301直接返回永久重... 目录一.try_files指令二.return指令三.rewrite指令区分重写与重定向重写: 请求

MySQL 打开binlog日志的方法及注意事项

《MySQL打开binlog日志的方法及注意事项》本文给大家介绍MySQL打开binlog日志的方法及注意事项,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、默认状态二、如何检查 binlog 状态三、如何开启 binlog3.1 临时开启(重启后失效)

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示