动手学深度学习学习笔记tf2.0版(5.10 批量归一化)

2024-02-12 05:32

本文主要是介绍动手学深度学习学习笔记tf2.0版(5.10 批量归一化),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
在这里插入图片描述
batch_normalization就是在batch方向上,做样本归一化
在这里插入图片描述
5.10.2. 从零开始实现
下面我们通过numpy中的ndarray来实现批量归一化层。

def batch_norm(is_training,X, gamma, beta, moving_mean, moving_var, eps, momentum):# 判断是当前模式是训练模式还是预测模式if not is_training:# 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差X_hat = (X - moving_mean) / np.sqrt(moving_var + eps)else:assert len(X.shape) in (2, 4)if len(X.shape) == 2:# 使用全连接层的情况,计算特征维上的均值和方差mean = X.mean(axis=0)var = ((X - mean) ** 2).mean(axis=0)else:# 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。这里我们需要保持# X的形状以便后面可以做广播运算mean = X.mean(axis=(0, 2, 3), keepdims=True)var = ((X - mean) ** 2).mean(axis=(0, 2, 3), keepdims=True)# 训练模式下用当前的均值和方差做标准化X_hat = (X - mean) / np.sqrt(var + eps)# 更新移动平均的均值和方差moving_mean = momentum * moving_mean + (1.0 - momentum) * meanmoving_var = momentum * moving_var + (1.0 - momentum) * varY = gamma * X_hat + beta  # 拉伸和偏移return Y, moving_mean, moving_var

接下来,我们自定义一个BatchNorm层。它保存参与求梯度和迭代的拉伸参数gamma和偏移参数beta,同时也维护移动平均得到的均值和方差,以便能够在模型预测时被使用。BatchNorm实例所需指定的num_features参数对于全连接层来说应为输出个数,对于卷积层来说则为输出通道数。该实例所需指定的num_dims参数对于全连接层和卷积层来说分别为2和4。

class BatchNormalization(tf.keras.layers.Layer):def __init__(self, decay=0.9, epsilon=1e-5, **kwargs):self.decay = decayself.epsilon = epsilonsuper(BatchNormalization, self).__init__(**kwargs)def build(self, input_shape):self.gamma = self.add_weight(name='gamma',shape=[input_shape[-1], ],initializer=tf.initializers.ones,trainable=True)self.beta = self.add_weight(name='beta',shape=[input_shape[-1], ],initializer=tf.initializers.zeros,trainable=True)self.moving_mean = self.add_weight(name='moving_mean',shape=[input_shape[-1], ],initializer=tf.initializers.zeros,trainable=False)self.moving_variance = self.add_weight(name='moving_variance',shape=[input_shape[-1], ],initializer=tf.initializers.ones,trainable=False)super(BatchNormalization, self).build(input_shape)def assign_moving_average(self, variable, value):"""variable = variable * decay + value * (1 - decay)"""delta = variable * self.decay + value * (1 - self.decay)return variable.assign(delta)@tf.functiondef call(self, inputs, training):if training:batch_mean, batch_variance = tf.nn.moments(inputs, list(range(len(inputs.shape) - 1)))mean_update = self.assign_moving_average(self.moving_mean, batch_mean)variance_update = self.assign_moving_average(self.moving_variance, batch_variance)self.add_update(mean_update)self.add_update(variance_update)mean, variance = batch_mean, batch_varianceelse:mean, variance = self.moving_mean, self.moving_varianceoutput = tf.nn.batch_normalization(inputs,mean=mean,variance=variance,offset=self.beta,scale=self.gamma,variance_epsilon=self.epsilon)return outputdef compute_output_shape(self, input_shape):return input_shape

使用批量归一化层的LeNet
下面我们修改“卷积神经网络(LeNet)”这一节介绍的LeNet模型,从而应用批量归一化层。我们在所有的卷积层或全连接层之后、激活层之前加入批量归一化层。

net = tf.keras.models.Sequential([tf.keras.layers.Conv2D(filters=6,kernel_size=5),BatchNormalization(),tf.keras.layers.Activation('sigmoid'),tf.keras.layers.MaxPool2D(pool_size=2, strides=2),tf.keras.layers.Conv2D(filters=16,kernel_size=5),BatchNormalization(),tf.keras.layers.Activation('sigmoid'),tf.keras.layers.MaxPool2D(pool_size=2, strides=2),tf.keras.layers.Flatten(),tf.keras.layers.Dense(120),BatchNormalization(),tf.keras.layers.Activation('sigmoid'),tf.keras.layers.Dense(84),BatchNormalization(),tf.keras.layers.Activation('sigmoid'),tf.keras.layers.Dense(10,activation='sigmoid')]
)

简洁实现
与我们刚刚自己定义的BatchNorm类相比,keras中layers模块定义的BatchNorm类使用起来更加简单。它不需要指定自己定义的BatchNorm类中所需的num_features和num_dims参数值。在keras中,这些参数值都将通过延后初始化而自动获取。下面我们用keras实现使用批量归一化的LeNet。

net = tf.keras.models.Sequential()
net.add(tf.keras.layers.Conv2D(filters=6,kernel_size=5))
net.add(tf.keras.layers.BatchNormalization())
net.add(tf.keras.layers.Activation('sigmoid'))
net.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2))
net.add(tf.keras.layers.Conv2D(filters=16,kernel_size=5))
net.add(tf.keras.layers.BatchNormalization())
net.add(tf.keras.layers.Activation('sigmoid'))
net.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2))
net.add(tf.keras.layers.Flatten())
net.add(tf.keras.layers.Dense(120))
net.add(tf.keras.layers.BatchNormalization())
net.add(tf.keras.layers.Activation('sigmoid'))
net.add(tf.keras.layers.Dense(84))
net.add(tf.keras.layers.BatchNormalization())
net.add(tf.keras.layers.Activation('sigmoid'))
net.add(tf.keras.layers.Dense(10,activation='sigmoid'))
# 获取数据
from tensorflow.keras.datasets import fashion_mnist
import matplotlib.pyplot as plt(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()# 数据预处理
def data_scale(x, y):x = tf.cast(x, tf.float32)x = x / 255.0x = tf.reshape(x, (x.shape[0], x.shape[1], 1))x = tf.image.resize_with_pad(image=x, target_height=224,target_width=224)return x, y
# 由于笔记本训练太慢了,使用1000条数据,跑一下先,算力够的可以直接使用全部数据更加明显
train_db = tf.data.Dataset.from_tensor_slices((x_train,y_train)).shuffle(20).map(data_scale).batch(128)
test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test)).shuffle(20).map(data_scale).batch(128)
# 定义优化器和损失函数
optimizer = tf.keras.optimizers.SGD(lr=1e-2)
loss = tf.keras.losses.sparse_categorical_crossentropy
net.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])net.fit_generator(train_db, epochs=10, validation_data=test_db)    # 这里就不跑太多轮了,有机器可以自己调参跑个好的结果
net.summary()

在这里插入图片描述

# 展示其中的前八层的特征图
X = next(iter(train_db))[0][0]def show(X, k,i, name):print(X.shape)X = tf.expand_dims(X, axis=-1)# 将每个图转换为 200 * 200的像素,但这个不是图大小X = tf.image.resize(X,  [200,200], method='bilinear')X_ = tf.squeeze(X)t = plt.subplot(8, 4,  4*k + i + 1)t.title.set_text('layer %s:'%k + name + '-' + str(i))plt.imshow(X_)X = tf.expand_dims(X, axis=0)# 设置图纸大小
plt.figure(figsize=(15, 15))
# 打印前 8 层的部分特征图
for k,blk in enumerate(net.layers[0:8]):print(blk.name,'itput shape:\t',X.shape)
#     show(X[0,:,:,0])X = blk(X)print(blk.name, 'output shape:\t', X.shape)# 选择其中的四个通道for i in range(4):show(X[0,:,:,i], k, i, blk.name)
# 调整子图的间隔
left  = 0.125  # the left side of the subplots of the figure
right = 0.9    # the right side of the subplots of the figure
bottom = 0.1   # the bottom of the subplots of the figure
top = 0.9      # the top of the subplots of the figure
wspace = 0.2   # the amount of width reserved for blank space between subplots,# expressed as a fraction of the average axis width
hspace = 0.6   # the amount of height reserved for white space between subplots,# expressed as a fraction of the average axis heightplt.subplots_adjust(left=left, bottom=bottom, right=right, top=top,wspace=wspace, hspace=hspace)plt.show()

在这里插入图片描述

这篇关于动手学深度学习学习笔记tf2.0版(5.10 批量归一化)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701758

相关文章

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Python实现AVIF图片与其他图片格式间的批量转换

《Python实现AVIF图片与其他图片格式间的批量转换》这篇文章主要为大家详细介绍了如何使用Pillow库实现AVIF与其他格式的相互转换,即将AVIF转换为常见的格式,比如JPG或PNG,需要的小... 目录环境配置1.将单个 AVIF 图片转换为 JPG 和 PNG2.批量转换目录下所有 AVIF 图

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言