动手学深度学习学习笔记tf2.0版(5.9 含并行连结的网络(GoogLeNet))

2024-02-12 05:32

本文主要是介绍动手学深度学习学习笔记tf2.0版(5.9 含并行连结的网络(GoogLeNet)),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GoogLeNet学习笔记

github代码地址:https://github.com/taichuai/d2l_zh_tensorflow2.0

在这里插入图片描述

在这里插入图片描述
模型结构仔细理解一下
在这里插入图片描述

import tensorflow as tf
print(tf.__version__)for gpu in tf.config.experimental.list_physical_devices('GPU'):tf.config.experimental.set_memory_growth(gpu, True)class Inception(tf.keras.layers.Layer):def __init__(self,c1, c2, c3, c4):super().__init__()# 线路1,单1 x 1卷积层self.p1_1 = tf.keras.layers.Conv2D(c1, kernel_size=1, activation='relu', padding='same')# 线路2,1 x 1卷积层后接3 x 3卷积层self.p2_1 = tf.keras.layers.Conv2D(c2[0], kernel_size=1, padding='same', activation='relu')self.p2_2 = tf.keras.layers.Conv2D(c2[1], kernel_size=3, padding='same',activation='relu')# 线路3,1 x 1卷积层后接5 x 5卷积层self.p3_1 = tf.keras.layers.Conv2D(c3[0], kernel_size=1, padding='same', activation='relu')self.p3_2 = tf.keras.layers.Conv2D(c3[1], kernel_size=5, padding='same',activation='relu')# 线路4,3 x 3最大池化层后接1 x 1卷积层self.p4_1 = tf.keras.layers.MaxPool2D(pool_size=3, padding='same', strides=1)self.p4_2 = tf.keras.layers.Conv2D(c4, kernel_size=1, padding='same', activation='relu')def call(self, x):p1 = self.p1_1(x)p2 = self.p2_2(self.p2_1(x))p3 = self.p3_2(self.p3_1(x))p4 = self.p4_2(self.p4_1(x))return tf.concat([p1, p2, p3, p4], axis=-1)  # 在通道维上连结输出Inception(64, (96, 128), (16, 32), 32)

在这里插入图片描述

b1 = tf.keras.models.Sequential()
b1.add(tf.keras.layers.Conv2D(64, kernel_size=7, strides=2, padding='same', activation='relu'))
b1.add(tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same'))

第二模块使用2个卷积层:首先是64通道的1×11×1卷积层,然后是将通道增大3倍的3×33×3卷积层。它对应Inception块中的第二条线路。

b2 = tf.keras.models.Sequential()
b2.add(tf.keras.layers.Conv2D(64, kernel_size=1, padding='same', activation='relu'))
b2.add(tf.keras.layers.Conv2D(192, kernel_size=3, padding='same', activation='relu'))
b2.add(tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same'))

第三模块串联2个完整的Inception块。第一个Inception块的输出通道数为64+128+32+32=25664+128+32+32=256,其中4条线路的输出通道数比例为64:128:32:32=2:4:1:112832:32=241:164:128:32:32=2:4:1:1。其中第二、第三条线路先分别将输入通道数减小至96/192=1/296/192=1/2和16/192=1/1216/192=1/12后,再接上第二层卷积层。第二个Inception块输出通道数增至128+192+96+64=480128+192+96+64=480,每条线路的输出通道数之比为128:192:96:64=4:6:3:219296:64 = 463:2128:192:96:64=4:6:3:2。其中第二、第三条线路先分别将输入通道数减小至128/256=1/2128/256=1/2和32/256=1/832/256=1/8。

b3 = tf.keras.models.Sequential()
b3.add(Inception(64, (96, 128), (16, 32), 32))
b3.add(Inception(128, (128, 192), (32, 96), 64))
b3.add(tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same'))

第四模块更加复杂。它串联了5个Inception块,其输出通道数分别是192+208+48+64=512192+208+48+64=512、160+224+64+64=512160+224+64+64=512、128+256+64+64=512128+256+64+64=512、112+288+64+64=528112+288+64+64=528和256+320+128+128=832256+320+128+128=832。这些线路的通道数分配和第三模块中的类似,首先含3×33×3卷积层的第二条线路输出最多通道,其次是仅含1×11×1卷积层的第一条线路,之后是含5×55×5卷积层的第三条线路和含3×33×3最大池化层的第四条线路。其中第二、第三条线路都会先按比例减小通道数。这些比例在各个Inception块中都略有不同。

b4 = tf.keras.models.Sequential()
b4.add(Inception(192, (96, 208), (16, 48), 64))
b4.add(Inception(160, (112, 224), (24, 64), 64))
b4.add(Inception(128, (128, 256), (24, 64), 64))
b4.add(Inception(112, (144, 288), (32, 64), 64))
b4.add(Inception(256, (160, 320), (32, 128), 128))
b4.add(tf.keras.layers.MaxPool2D(pool_size=3, strides=2, padding='same'))

第五模块有输出通道数为256+320+128+128=832256+320+128+128=832和384+384+128+128=1024384+384+128+128=1024的两个Inception块。其中每条线路的通道数的分配思路和第三、第四模块中的一致,只是在具体数值上有所不同。需要注意的是,第五模块的后面紧跟输出层,该模块同NiN一样使用全局平均池化层来将每个通道的高和宽变成1。最后我们将输出变成二维数组后接上一个输出个数为标签类别数的全连接层。

b5 = tf.keras.models.Sequential()
b5.add(Inception(256, (160, 320), (32, 128), 128))
b5.add(Inception(384, (192, 384), (48, 128), 128))
b5.add(tf.keras.layers.GlobalAvgPool2D())net = tf.keras.models.Sequential([b1, b2, b3, b4, b5, tf.keras.layers.Dense(10)])

GoogLeNet模型的计算复杂,而且不如VGG那样便于修改通道数。本节里我们将输入的高和宽从224降到96来简化计算。下面演示各个模块之间的输出的形状变化。

X = tf.random.uniform(shape=(1, 96, 96, 1))
for layer in net.layers:X = layer(X)print(layer.name, 'output shape:\t', X.shape)
# 获取数据
from tensorflow.keras.datasets import fashion_mnist
import matplotlib.pyplot as plt(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()# 数据预处理
def data_scale(x, y):x = tf.cast(x, tf.float32)x = x / 255.0x = tf.reshape(x, (x.shape[0], x.shape[1], 1))x = tf.image.resize_with_pad(image=x, target_height=224,target_width=224)return x, y
# 由于笔记本训练太慢了,使用1000条数据,跑一下先,算力够的可以直接使用全部数据更加明显
train_db = tf.data.Dataset.from_tensor_slices((x_train,y_train)).shuffle(20).map(data_scale).batch(64)
test_db = tf.data.Dataset.from_tensor_slices((x_test,y_test)).shuffle(20).map(data_scale).batch(64)
# 定义优化器和损失函数
optimizer = tf.keras.optimizers.SGD(lr=1e-1)
loss = tf.keras.losses.sparse_categorical_crossentropy
net.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
net.fit_generator(train_db, epochs=10, validation_data=test_db)    # 这里就不跑太多轮了,有机器可以自己调参跑个好的结果
net.summary()

在这里插入图片描述
由于网络提取特征能力强,所以收敛很快,再看一下中间特征层:

# 展示其中的前八层的特征图
X = next(iter(train_db))[0][0]def show(X, k,i):print(X.shape)X = tf.expand_dims(X, axis=-1)# 将每个图转换为 200 * 200的像素,但这个不是图大小X = tf.image.resize(X,  [200,200], method='bilinear')X_ = tf.squeeze(X)plt.subplot(4, 4,  4*k + i + 1)plt.imshow(X_)X = tf.expand_dims(X, axis=0)# 设置图纸大小
plt.figure(figsize=(10, 10))
# 打印前 4 层的部分特征图
for k,blk in enumerate(net.layers[0:4]):print(blk.name,'itput shape:\t',X.shape)
#     show(X[0,:,:,0])X = blk(X)print(blk.name, 'output shape:\t', X.shape)for i in range(4):show(X[0,:,:,i], k, i)plt.show()

在这里插入图片描述

这篇关于动手学深度学习学习笔记tf2.0版(5.9 含并行连结的网络(GoogLeNet))的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/701756

相关文章

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Java Stream 并行流简介、使用与注意事项小结

《JavaStream并行流简介、使用与注意事项小结》Java8并行流基于StreamAPI,利用多核CPU提升计算密集型任务效率,但需注意线程安全、顺序不确定及线程池管理,可通过自定义线程池与C... 目录1. 并行流简介​特点:​2. 并行流的简单使用​示例:并行流的基本使用​3. 配合自定义线程池​示

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.