使用TensorFlow Object Detection API进行红绿灯检测

2024-02-12 04:32

本文主要是介绍使用TensorFlow Object Detection API进行红绿灯检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目目录结构

本文中未明确说明的情况下,所使用的路径均在./research目录下。

  • research
    • object detection
    • datasets
      • my_traffic_light (参照Pascal VOC目录结构)
        • Annotations
        • ImageSets
        • JPEGImages
        • SegmentationClass
        • SegmentationObject
        • tfrecord
          ***.tfrecord
          ***.pbtxt
    • ssd_traffic_light_detection
      • ssd_traffic_light_detection_model
        • saved_model
          • variables
            saved_model.pb
            pipeline.config
            model.ckpt.meta / index / data-00000-of-00001
            frozen_inference_graph.pb
            checkpoint
      • train (主要存放用于启动训练的一些文件,和训练中间文件)
        • export
        • eval_0
          train_cmd.sh (存放一些会用到的训练命令等)
          model.ckpt-*****.meta
          model.ckpt-*****.index
          model.ckpt-*****.data-00000-of-00001
          graph.pbtxt
          events.out.tfevents.*****
          model_name_datasets.config
          pipeline.config
          checkpoint

数据集制作

图像采集

使用华为手机拍摄视频,存为*.mp4文件。

提取图像

extract_images_from_video
测试读取视频文件,查看文件的FPS/H/W和总帧数。

import cv2
import os
video_path = './JPEGImages/VID_20200419_122755.mp4'
output_dir = './JPEGImages/VID_20200419_122755'
if not os.path.exists(output_dir):os.mkdir(output_dir)cap = cv2.VideoCapture(video_path)
success, frame = cap.read()
fps = cap.get(cv2.CAP_PROP_FPS)
n_frame = cap.get(cv2.CAP_PROP_FRAME_COUNT)
h_frame = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
w_frame = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
print('The video propertities is: fps={}, height={}, width={}, and has {} frames.'.format(fps, h_frame, w_frame, n_frame))

提取图片到视频文件夹下,提取的图片存放到以视频文件名为名的文件夹下。

def extract_images_from_video(video_path):video_name = os.path.basename(video_path).split('.')[0] # 得到视频名字,不含后缀output_dir = os.path.join(os.path.dirname(video_path), video_name)if not os.path.exists(output_dir):os.mkdir(output_dir)cameraCapture = cv2.VideoCapture(video_path)success, frame = cameraCapture.read()idx = 0n_sels = 0while success:idx += 1if idx%45==0: # 每45张图片选取一张n_sels += 1frame = cv2.rotate(frame, cv2.ROTATE_90_CLOCKWISE)frame_name = "{0}_{1:0>5d}.jpg".format(video_name, n_sels)frame_saved_path = os.path.join(output_dir, frame_name)cv2.imwrite(frame_saved_path, frame)success, frame = cameraCapture.read()cameraCapture.release()print("Finished extract images from {}".format(video_name))import glob
video_files = "./JPEGImages/VID_20200419_*.mp4"
video_filepaths = glob.glob(video_files)
print(video_filepaths)
for path in video_filepaths:extract_images_from_video(path)

图像标注

训练

模型导出

进行推理

推理文件

导入包

import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfilefrom distutils.version import StrictVersion
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("../../")
from object_detection.utils import ops as utils_opsif StrictVersion(tf.__version__) < StrictVersion('1.9.0'):raise ImportError('Please upgrade your TensorFlow installation to v1.9.* or later!')# This is needed to display the images.
%matplotlib inline
from utils import label_map_util
from utils import visualization_utils as vis_util
# What model to download.
MODEL_NAME = 'my_traffic_light_detection'
# MODEL_FILE = MODEL_NAME + '.tar.gz'
MODEL_DIR = './model'
# DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_FROZEN_GRAPH = MODEL_DIR + '/frozen_inference_graph.pb'# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('./dataset', 'traffic_light_label_map.pbtxt')

导入计算图

detection_graph = tf.Graph()
with detection_graph.as_default():od_graph_def = tf.GraphDef()with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:serialized_graph = fid.read()od_graph_def.ParseFromString(serialized_graph)tf.import_graph_def(od_graph_def, name='')ops = tf.get_default_graph().get_operations()all_tensor_names = {output.name for op in ops for output in op.outputs}print(all_tensor_names)category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
print(category_index)def load_image_into_numpy_array(image):(im_width, im_height) = image.sizereturn np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)
import glob
PATH_TO_TEST_IMAGES_DIR = './test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(0, 10) ]
# TEST_IMAGE_PATHS = glob.glob("./test_images/*.jpg")
print(TEST_IMAGE_PATHS)
# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)
def run_inference_for_single_image(image, graph):with graph.as_default():with tf.Session() as sess:# Get handles to input and output tensorsops = tf.get_default_graph().get_operations()all_tensor_names = {output.name for op in ops for output in op.outputs}tensor_dict = {}for key in ['num_detections', 'detection_boxes', 'detection_scores','detection_classes', 'detection_masks']:tensor_name = key + ':0'if tensor_name in all_tensor_names:tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(tensor_name)if 'detection_masks' in tensor_dict:# The following processing is only for single imagedetection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(detection_masks, detection_boxes, image.shape[0], image.shape[1])detection_masks_reframed = tf.cast(tf.greater(detection_masks_reframed, 0.5), tf.uint8)# Follow the convention by adding back the batch dimensiontensor_dict['detection_masks'] = tf.expand_dims(detection_masks_reframed, 0)image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')# Run inferenceoutput_dict = sess.run(tensor_dict,feed_dict={image_tensor: np.expand_dims(image, 0)})# all outputs are float32 numpy arrays, so convert types as appropriateoutput_dict['num_detections'] = int(output_dict['num_detections'][0])output_dict['detection_classes'] = output_dict['detection_classes'][0].astype(np.uint8)output_dict['detection_boxes'] = output_dict['detection_boxes'][0]output_dict['detection_scores'] = output_dict['detection_scores'][0]if 'detection_masks' in output_dict:output_dict['detection_masks'] = output_dict['detection_masks'][0]return output_dict
import cv2
for image_path in TEST_IMAGE_PATHS:image = Image.open(image_path)# the array based representation of the image will be used later in order to prepare the# result image with boxes and labels on it.image_np = load_image_into_numpy_array(image)# Expand dimensions since the model expects images to have shape: [1, None, None, 3]image_np_expanded = np.expand_dims(image_np, axis=0)# Actual detection.output_dict = run_inference_for_single_image(image_np, detection_graph)print(output_dict)# Visualization of the results of a detection.vis_util.visualize_boxes_and_labels_on_image_array(image_np,output_dict['detection_boxes'],output_dict['detection_classes'],output_dict['detection_scores'],category_index,instance_masks=output_dict.get('detection_masks'),use_normalized_coordinates=True,line_thickness=4)image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
#   cv2.imshow('image',image_np)
#   cv2.waitKey(10)
#   cv2.destroyAllWindows()
#   if cv2.waitKey(1000)&0xff == 113:
# cv2.destroyAllWindows()
#   plt.figure(figsize=IMAGE_SIZE)
#   plt.imshow(image_np)
# plt.show()

这篇关于使用TensorFlow Object Detection API进行红绿灯检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701676

相关文章

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows