使用TensorFlow Object Detection API进行红绿灯检测

2024-02-12 04:32

本文主要是介绍使用TensorFlow Object Detection API进行红绿灯检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目目录结构

本文中未明确说明的情况下,所使用的路径均在./research目录下。

  • research
    • object detection
    • datasets
      • my_traffic_light (参照Pascal VOC目录结构)
        • Annotations
        • ImageSets
        • JPEGImages
        • SegmentationClass
        • SegmentationObject
        • tfrecord
          ***.tfrecord
          ***.pbtxt
    • ssd_traffic_light_detection
      • ssd_traffic_light_detection_model
        • saved_model
          • variables
            saved_model.pb
            pipeline.config
            model.ckpt.meta / index / data-00000-of-00001
            frozen_inference_graph.pb
            checkpoint
      • train (主要存放用于启动训练的一些文件,和训练中间文件)
        • export
        • eval_0
          train_cmd.sh (存放一些会用到的训练命令等)
          model.ckpt-*****.meta
          model.ckpt-*****.index
          model.ckpt-*****.data-00000-of-00001
          graph.pbtxt
          events.out.tfevents.*****
          model_name_datasets.config
          pipeline.config
          checkpoint

数据集制作

图像采集

使用华为手机拍摄视频,存为*.mp4文件。

提取图像

extract_images_from_video
测试读取视频文件,查看文件的FPS/H/W和总帧数。

import cv2
import os
video_path = './JPEGImages/VID_20200419_122755.mp4'
output_dir = './JPEGImages/VID_20200419_122755'
if not os.path.exists(output_dir):os.mkdir(output_dir)cap = cv2.VideoCapture(video_path)
success, frame = cap.read()
fps = cap.get(cv2.CAP_PROP_FPS)
n_frame = cap.get(cv2.CAP_PROP_FRAME_COUNT)
h_frame = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
w_frame = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
print('The video propertities is: fps={}, height={}, width={}, and has {} frames.'.format(fps, h_frame, w_frame, n_frame))

提取图片到视频文件夹下,提取的图片存放到以视频文件名为名的文件夹下。

def extract_images_from_video(video_path):video_name = os.path.basename(video_path).split('.')[0] # 得到视频名字,不含后缀output_dir = os.path.join(os.path.dirname(video_path), video_name)if not os.path.exists(output_dir):os.mkdir(output_dir)cameraCapture = cv2.VideoCapture(video_path)success, frame = cameraCapture.read()idx = 0n_sels = 0while success:idx += 1if idx%45==0: # 每45张图片选取一张n_sels += 1frame = cv2.rotate(frame, cv2.ROTATE_90_CLOCKWISE)frame_name = "{0}_{1:0>5d}.jpg".format(video_name, n_sels)frame_saved_path = os.path.join(output_dir, frame_name)cv2.imwrite(frame_saved_path, frame)success, frame = cameraCapture.read()cameraCapture.release()print("Finished extract images from {}".format(video_name))import glob
video_files = "./JPEGImages/VID_20200419_*.mp4"
video_filepaths = glob.glob(video_files)
print(video_filepaths)
for path in video_filepaths:extract_images_from_video(path)

图像标注

训练

模型导出

进行推理

推理文件

导入包

import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfilefrom distutils.version import StrictVersion
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("../../")
from object_detection.utils import ops as utils_opsif StrictVersion(tf.__version__) < StrictVersion('1.9.0'):raise ImportError('Please upgrade your TensorFlow installation to v1.9.* or later!')# This is needed to display the images.
%matplotlib inline
from utils import label_map_util
from utils import visualization_utils as vis_util
# What model to download.
MODEL_NAME = 'my_traffic_light_detection'
# MODEL_FILE = MODEL_NAME + '.tar.gz'
MODEL_DIR = './model'
# DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_FROZEN_GRAPH = MODEL_DIR + '/frozen_inference_graph.pb'# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('./dataset', 'traffic_light_label_map.pbtxt')

导入计算图

detection_graph = tf.Graph()
with detection_graph.as_default():od_graph_def = tf.GraphDef()with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:serialized_graph = fid.read()od_graph_def.ParseFromString(serialized_graph)tf.import_graph_def(od_graph_def, name='')ops = tf.get_default_graph().get_operations()all_tensor_names = {output.name for op in ops for output in op.outputs}print(all_tensor_names)category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)
print(category_index)def load_image_into_numpy_array(image):(im_width, im_height) = image.sizereturn np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)
import glob
PATH_TO_TEST_IMAGES_DIR = './test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(0, 10) ]
# TEST_IMAGE_PATHS = glob.glob("./test_images/*.jpg")
print(TEST_IMAGE_PATHS)
# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)
def run_inference_for_single_image(image, graph):with graph.as_default():with tf.Session() as sess:# Get handles to input and output tensorsops = tf.get_default_graph().get_operations()all_tensor_names = {output.name for op in ops for output in op.outputs}tensor_dict = {}for key in ['num_detections', 'detection_boxes', 'detection_scores','detection_classes', 'detection_masks']:tensor_name = key + ':0'if tensor_name in all_tensor_names:tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(tensor_name)if 'detection_masks' in tensor_dict:# The following processing is only for single imagedetection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(detection_masks, detection_boxes, image.shape[0], image.shape[1])detection_masks_reframed = tf.cast(tf.greater(detection_masks_reframed, 0.5), tf.uint8)# Follow the convention by adding back the batch dimensiontensor_dict['detection_masks'] = tf.expand_dims(detection_masks_reframed, 0)image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')# Run inferenceoutput_dict = sess.run(tensor_dict,feed_dict={image_tensor: np.expand_dims(image, 0)})# all outputs are float32 numpy arrays, so convert types as appropriateoutput_dict['num_detections'] = int(output_dict['num_detections'][0])output_dict['detection_classes'] = output_dict['detection_classes'][0].astype(np.uint8)output_dict['detection_boxes'] = output_dict['detection_boxes'][0]output_dict['detection_scores'] = output_dict['detection_scores'][0]if 'detection_masks' in output_dict:output_dict['detection_masks'] = output_dict['detection_masks'][0]return output_dict
import cv2
for image_path in TEST_IMAGE_PATHS:image = Image.open(image_path)# the array based representation of the image will be used later in order to prepare the# result image with boxes and labels on it.image_np = load_image_into_numpy_array(image)# Expand dimensions since the model expects images to have shape: [1, None, None, 3]image_np_expanded = np.expand_dims(image_np, axis=0)# Actual detection.output_dict = run_inference_for_single_image(image_np, detection_graph)print(output_dict)# Visualization of the results of a detection.vis_util.visualize_boxes_and_labels_on_image_array(image_np,output_dict['detection_boxes'],output_dict['detection_classes'],output_dict['detection_scores'],category_index,instance_masks=output_dict.get('detection_masks'),use_normalized_coordinates=True,line_thickness=4)image_np = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)
#   cv2.imshow('image',image_np)
#   cv2.waitKey(10)
#   cv2.destroyAllWindows()
#   if cv2.waitKey(1000)&0xff == 113:
# cv2.destroyAllWindows()
#   plt.figure(figsize=IMAGE_SIZE)
#   plt.imshow(image_np)
# plt.show()

这篇关于使用TensorFlow Object Detection API进行红绿灯检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701676

相关文章

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安