两种不同风格的lxml标注文件的解析:pet和Lara_UrbanSeq1_Traffic Light

2024-02-12 04:32

本文主要是介绍两种不同风格的lxml标注文件的解析:pet和Lara_UrbanSeq1_Traffic Light,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. pet数据集标注样式

以Abyssinian_12.xml为例,文件内容如下:

<annotation><folder>OXIIIT</folder><filename>Abyssinian_12.jpg</filename><source><database>OXFORD-IIIT Pet Dataset</database><annotation>OXIIIT</annotation><image>flickr</image></source><size><width>335</width><height>500</height><depth>3</depth></size><segmented>0</segmented><object><name>cat</name><pose>Frontal</pose><truncated>0</truncated><occluded>0</occluded><bndbox><xmin>94</xmin><ymin>83</ymin><xmax>211</xmax><ymax>190</ymax></bndbox><difficult>0</difficult></object>
</annotation>

分析可知,其节点全部为tag:text形式,每个tag不包含attrib。因此,参照Object Detection API官方,采用以下方式来进行递归读取,返回一个包含多层级字典结构的数据。

import numpy as np
import PIL.Image
import tensorflow as tf
from lxml import etreefrom object_detection.dataset_tools import tf_record_creation_util
from object_detection.utils import dataset_util
from object_detection.utils import label_map_utilxml_path = "./Annotations/Abyssinian_12.xml"
# xml_path = "./Annotations/Lara_test.xml"with tf.gfile.GFile(xml_path, 'r') as fid:xml_str = fid.read()xml = etree.fromstring(xml_str)
#     xml = etree.fromstring(xml_str.encode('utf-8'))data = dataset_util.recursive_parse_xml_to_dict(xml)['annotation']
#     data = dataset_util.recursive_parse_xml_to_dict(xml)print(data)
#     for item in data:
#         print(type(item))

其中调用的函数recursive_parse_xml_to_dict(xml)如下:

def recursive_parse_xml_to_dict(xml):"""Recursively parses XML contents to python dict.We assume that `object` tags are the only ones that can appearmultiple times at the same level of a tree.Args:xml: xml tree obtained by parsing XML file contents using lxml.etreeReturns:Python dictionary holding XML contents."""if not xml:return {xml.tag: xml.text}result = {}for child in xml:child_result = recursive_parse_xml_to_dict(child)if child.tag != 'object':result[child.tag] = child_result[child.tag]else:if child.tag not in result:result[child.tag] = []result[child.tag].append(child_result[child.tag])return {xml.tag: result}

2. Lara标注样式

Lara交通标志数据集的标注文件将所有的图片文件信息整合在一个文件中,截取一段如下:

<?xml version="1.0" encoding="UTF-8"?>
<dataset name="Lara_UrbanSeq1" version="0.5" comments="Public database: http://www.lara.prd.fr/benchmarks/trafficlightsrecognition"><frame number="6695" sec="487" ms="829"><objectlist><object id="18"><orientation>90</orientation><box h="39" w="18" xc="294" yc="34"/><appearance>appear</appearance><hypothesislist><hypothesis evaluation="1.0" id="1" prev="1.0"><type evaluation="1.0">Traffic Light</type><subtype evaluation="1.0">go</subtype></hypothesis></hypothesislist></object><object id="19"><orientation>90</orientation><box h="15" w="6" xc="518" yc="123"/><appearance>appear</appearance><hypothesislist><hypothesis evaluation="1.0" id="1" prev="1.0"><type evaluation="1.0">Traffic Light</type><subtype evaluation="1.0">go</subtype></hypothesis></hypothesislist></object><object id="20"><orientation>90</orientation><box h="15" w="6" xc="382" yc="122"/><appearance>appear</appearance><hypothesislist><hypothesis evaluation="1.0" id="1" prev="1.0"><type evaluation="1.0">Traffic Light</type><subtype evaluation="1.0">go</subtype></hypothesis></hypothesislist></object></objectlist><grouplist></grouplist></frame>
</dataset>

可见其主要信息都包含在tag:attrib中,是难以用递归函数来实现解析的。
对该文件进行单独测试如下:

# 测试解析xml文件
# examples_path = os.path.join(annotations_dir, 'trainval.txt')
# examples_list = dataset_util.read_examples_list(examples_path)
# xml_path = "./Annotations/Lara_UrbanSeq1_GroundTruth_cvml.xml"
# tree = ET.parse(xml_path)
# root = tree.getroot()
# print(root.tag)
# print(root.attrib)
# print(root[11178].tag)
# print(root[11178].attrib)
# print(root[11178][0][0].tag)
# print(root[11178][0][0].attrib)
# for frame in root.findall("./frame")
# for obj in root[11178][0][0]:
#     print(obj.attrib)
#     print(obj.tag)

主要实现代码如下:

# 从xml文件解析出数据,以list形式返回。每个list的item都是包含相关信息的一个dict
def get_data_list(xml_path, label_map_dict):"""Function: parse xml to a list of image data, every item contain a dict of image name, size, and a list of objects.Args:xml_path: the path to the xml fileReturns:data_list: a list of data, every data is a dict contain keys.{   'filename': 'frame_006630.jpg', 'size':    {'width': 640, 'height': 480}, 'object':  [ {'bndbox': {'xmin': 368, 'xmax': 378, 'ymin': 94, 'ymax': 116}}, {'bndbox': {'xmin': 563, 'xmax': 571, 'ymin': 103, 'ymax': 123}}]}"""tree = ET.parse(xml_path)root = tree.getroot()data_list = []for frame in root.findall('./frame'):frame_number = int(frame.get("number"))img_name = "frame_{0:06d}.jpg".format(frame_number) # 得到第一个字段,文件名data = dict()data['filename']=img_nameimg_size = dict()img_size['width']=640img_size['height']=480data['size']=img_sizeobject_list=[]data['object']=object_listfor obj in frame.findall('./objectlist/object'): # 得到该帧里的每个objectobject = dict()# 这里待验证。暂时仍用读到的字符串,而没有转换为数字class_name = obj.find('./hypothesislist/hypothesis/subtype').text
#             classes_text.append(class_name.encode('utf-8'))
#             classes.append(label_map_dict[class_name])object['class_text'] = class_nameobject['class_id'] = label_map_dict[class_name]obj_h = int(obj.find('box').get("h"))    obj_w = int(obj.find('box').get("w"))obj_xc = int(obj.find('box').get("xc"))obj_yc = int(obj.find('box').get("yc"))xmin = obj_xc-int(obj_w//2)if xmin<0:xmin=0xmax = obj_xc+int(obj_w//2)ymin = obj_yc-int(obj_h//2)if ymin<0:ymin=0ymax = obj_yc+int(obj_h//2)bndbox = dict()            bndbox['xmin'] = xminbndbox['xmax'] = xmaxbndbox['ymin'] = yminbndbox['ymax'] = ymaxobject['bndbox'] = bndboxobject_list.append(object)data_list.append(data)return data_list

3. 主要对比

前者使用lxml.etree,后者使用xml.etree.ElementTree。解析过程不同。

这篇关于两种不同风格的lxml标注文件的解析:pet和Lara_UrbanSeq1_Traffic Light的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701668

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java8 Collectors.toMap() 的两种用法

《Java8Collectors.toMap()的两种用法》Collectors.toMap():JDK8中提供,用于将Stream流转换为Map,本文给大家介绍Java8Collector... 目录一、简单介绍用法1:根据某一属性,对对象的实例或属性做映射用法2:根据某一属性,对对象集合进行去重二、Du

Java JDK Validation 注解解析与使用方法验证

《JavaJDKValidation注解解析与使用方法验证》JakartaValidation提供了一种声明式、标准化的方式来验证Java对象,与框架无关,可以方便地集成到各种Java应用中,... 目录核心概念1. 主要注解基本约束注解其他常用注解2. 核心接口使用方法1. 基本使用添加依赖 (Maven