Exporting C++ classes from a DLL

2024-02-12 04:08
文章标签 c++ dll classes exporting

本文主要是介绍Exporting C++ classes from a DLL,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Exporting C++ classes from a DLL

这个文章中的内容和之前的文章中的内容是一致的意思,核心思想是在创建动态库的时候创建一个重虚函数类作为基类接口使用,而在exe中使用这些接口来访问动态库中对这些基类重写的函数,从而达到访问动态库的内容的目的。
目前个人对此问题的理解为:主要是C++中对编译器对代码进行编译之后,函数名称发生变化,跟C相比,C代码中的函数的名称在编译完成之后是不会发生变化的,而C++会发生变化,从而需要一种方法在C++中可以直接访问函数的原型名称,而虚函数在C++中是以指针的形式从在在整个类当中的,不属于任何一个实例。同时下面的代码中,需要注意的是:三个变量中的虚函数指针都是指向同一个地方。
// ConsoleApplication1.cpp : 定义控制台应用程序的入口点。
//#include "stdafx.h"
#include <iostream>
using namespace std;
class test_base {
public:test_base() {cout << "test_base construct fun" << endl;data = 0x22;}virtual ~test_base() {}void call_base() const {cout << "test_base:call_base():data=" << data<<endl;}virtual void display() const = 0;void testbase(test_base *base){base->call_base();base->display();}
private:	//test_base(const test_base &base);int data;
};class test_son:public  test_base {public:test_son():test_base(){cout << "test_son construct fun" << endl;data = 0xff;}virtual ~test_son() {}void call_base() const{cout << "test_son:call_base():data=" << data << endl;}void display() const{cout << "test_son:display():data=" << data << endl;}void testbase(test_son *base){base->call_base();base->display();}
private:int data;//test_son(const test_son &base);
};void testbase(test_base *base)
{base->call_base();base->display();
}
void testbase(test_son *base)
{base->call_base();base->display();
}
void testson(const test_son son)
{son.display();son.call_base();
}int main()
{
#if 1test_base *son_prt = new test_son();testbase(son_prt);son_prt->testbase(son_prt);cout << "========================================" << endl;test_son *son_prt1 = new test_son();testbase(son_prt1);son_prt1->testbase(son_prt1);cout << "========================================" << endl;test_son m_son =  test_son();testson(m_son);
#endif _getchar_nolock();return 0;
}
可以通过调试来看看对象中的虚函数表指针:



Because of ABI incompatibilities between compilers and even different versions of the same compiler, exporting C++ classes from DLLs is a tricky business. Luckily, with some care it is possible to do this safely, by employing abstract interfaces.

In this post I will show a code sample of a DLL and an application using it.The DLL exports a class by means of a factory function that creates new objects that adhere to a known abstract interface. The main application loads this DLL explicitly (with LoadLibrary) and uses the objects created by it. The code shown here is Windows-specific, but the same method should work for Linux and other platforms. Also, the same export technique will work for implicit DLL loading as well.

First, we define an abstract interface (by means of a class with pure virtual methods, and no data),in a file namedgeneric_interface.h:

上面最重要的说明的就是:by employing abstract interfaces.导出接口是安全的,导出抽象类是不安全的,因此我们对外只能export的"abstract interfaces.",包含纯虚方法的类叫抽象类,只包含纯虚方法的类叫"abstract interfaces."

classIKlass {
public:virtualvoid destroy() = 0;virtualint do_stuff(int param) = 0;virtualvoid do_something_else(double f) = 0;
};

Note that this interface has an explicit destroy method, for reasons I will explain later. Now, the DLL code, contained in a single C++ file:

#include "generic_interface.h"
#include <iostream>
#include <windows.h>
usingnamespace std;
classMyKlass : public IKlass {
public:MyKlass(): m_data(0){cerr << "MyKlass constructor\n";}~MyKlass(){cerr << "MyKlass destructor\n";}void destroy(){deletethis;}int do_stuff(int param){m_data += param;return m_data;}void do_something_else(double f){int intpart = static_cast<int>(f);m_data += intpart;}
private:int m_data;
};extern"C"__declspec(dllexport) IKlass* __cdecl create_klass()
{returnnew MyKlass;
}

There are two interesting entities here:

  1. MyKlass - a simplistic implementation of the IKlass interface.
  2. A factory function for creating new instances of MyKlass.

And here is a simple application (also contained in a single C++ file) that uses this library by loading the DLL explicitly, creating a new object and doing some work with it:

#include "generic_interface.h"
#include <iostream>
#include <windows.h>
usingnamespace std;// A factory of IKlass-implementing objects looks thus
typedef IKlass* (__cdecl *iklass_factory)();int main()
{// Load the DLLHINSTANCE dll_handle = ::LoadLibrary(TEXT("mylib.dll"));if (!dll_handle) {cerr << "Unable to load DLL!\n";return1;}// Get the function from the DLLiklass_factory factory_func = reinterpret_cast<iklass_factory>(::GetProcAddress(dll_handle, "create_klass"));if (!factory_func) {cerr << "Unable to load create_klass from DLL!\n";::FreeLibrary(dll_handle);return1;}// Ask the factory for a new object implementing the IKlass// interfaceIKlass* instance = factory_func();// Play with the objectint t = instance->do_stuff(5);cout << "t = " << t << endl;instance->do_something_else(100.3);int t2 = instance->do_stuff(0);cout << "t2 = " << t2 << endl;// Destroy it explicitlyinstance->destroy();::FreeLibrary(dll_handle);return0;
}

Alright, I raced through the code, but there are a lot of interesting details hiding in it. Let's go through them one by one.

Clean separation

There are other methods of exporting C++ classes from DLLs (here's one good discussion of the subject). The one presented here is the cleanest - the least amount of information is shared between the DLL and the application using it - just the generic interface header defining IKlass and an implicit agreement about the signature of the factory function.

The actual MyKlass can now use whatever it wants to implement its functionality, without exposing any additional details to the application.

Additionally, this code can easily serve as a basis for an even more generic plugin architecture. DLL files can be auto-discoverable from a known location, and a known function can be exposed from each that defines the exported factories.

Memory management

Memory management between DLLs can be a real pain, especially if each DLL links the MSVC C runtime statically (which tends to be common on Windows). Memory allocated in one DLL must not be released in another in such cases.

The solution presented here neatly overcomes this issue by leaving all memory management to the DLL. This is done by providing an explicit destroy function in the interface, that must be called when the object is no longer needed. Naturally, the application can wrap these objects by a smart pointer of some kind to implement RAII.

Note that destroy is implemented with delete this. This may raise an eyebrow or two, but it's actually valid C++ thatoccasionally makes sense if used judiciously.

It's time for a pop quiz: why doesn't IKlass need a virtual destructor?

Name mangling and calling convention

You've surely noticed that the signature of create_klass is rather intricate:

extern"C"__declspec(dllexport) IKlass* __cdecl create_klass()

Let's see what each part means, in order:

  • extern "C" - tells the C++ compiler that the linker should use the C calling convention and name mangling for this function. The name itself is exported from the DLL unmangled (create_klass)
  • __declspec(dllexport) - tells the linker to export the create_klass symbol from the DLL. Alternatively, the namecreate_klass can be placed in a .def file given to the linker.
  • __cdecl - repeats that the C calling convention is to be used. It's not strictly necessary here, but I include it for completeness (in the typedef for iklass_factory in the application code as well).

There is a variation on this theme, which I'll mention because it's a common problem people run into.

One can declare the function with the __stdcall calling convention instead of __cdecl. What this will do is causeGetProcAddress to not find the function in the DLL. A peek inside the DLL (with dumpbin /exports or another tool) reveals why - __stdcall causes the name to be mangled to something like _create_klass@0. To overcome this, either place the plain name create_klass in the exports section of the linker .def file, or use the full, mangled name in GetProcAddress. The latter might be required if you don't actually control the source code for the DL

这篇关于Exporting C++ classes from a DLL的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701624

相关文章

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

电脑提示d3dx11_43.dll缺失怎么办? DLL文件丢失的多种修复教程

《电脑提示d3dx11_43.dll缺失怎么办?DLL文件丢失的多种修复教程》在使用电脑玩游戏或运行某些图形处理软件时,有时会遇到系统提示“d3dx11_43.dll缺失”的错误,下面我们就来分享超... 在计算机使用过程中,我们可能会遇到一些错误提示,其中之一就是缺失某个dll文件。其中,d3dx11_4

游戏闪退弹窗提示找不到storm.dll文件怎么办? Stormdll文件损坏修复技巧

《游戏闪退弹窗提示找不到storm.dll文件怎么办?Stormdll文件损坏修复技巧》DLL文件丢失或损坏会导致软件无法正常运行,例如我们在电脑上运行软件或游戏时会得到以下提示:storm.dll... 很多玩家在打开游戏时,突然弹出“找不到storm.dll文件”的提示框,随后游戏直接闪退,这通常是由于

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

C++中NULL与nullptr的区别小结

《C++中NULL与nullptr的区别小结》本文介绍了C++编程中NULL与nullptr的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编... 目录C++98空值——NULLC++11空值——nullptr区别对比示例 C++98空值——NUL

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window