利用Python和pandas库进行股票技术分析:移动平均线和MACD指标

2024-02-12 01:52

本文主要是介绍利用Python和pandas库进行股票技术分析:移动平均线和MACD指标,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

利用Python和pandas库进行股票技术分析:移动平均线和MACD指标

    • 介绍
      • 准备工作
      • 数据准备
      • 计算移动平均线
      • 计算MACD指标
      • 结果展示
      • 完整代码
      • 演示


介绍

在股票市场中,技术分析是一种常用的方法,它通过对股票价格和交易量等历史数据的分析,来预测未来价格走势。移动平均线和MACD(Moving Average Convergence Divergence)指标是技术分析中常用的工具之一,它们能够帮助投资者识别趋势和短期交叉信号。

本文将分享如何使用Python编程语言以及pandas库来计算股票的移动平均线和MACD指标,并通过一个简单的示例来演示其应用。

准备工作

首先,需要导入pandas库,它是Python中用于数据分析的重要库之一。接下来将使用pandas来处理和分析股票价格数据。

import pandas as pd

pandas 的主要特点和功能:

特点和功能描述
数据结构提供了 Series 和 DataFrame 两种数据结构,方便处理一维和二维数据。
数据读取和写入支持从多种文件格式(如CSV、Excel、SQL、JSON、HTML等)中读取数据,并可以将数据写入到这些格式中。
数据清洗和转换提供了丰富的数据清洗和转换函数,如处理缺失值、重复值、数据类型转换、索引操作、数据合并、数据重塑等。
数据分析和统计提供了各种统计函数和方法,用于描述性统计、数据聚合、分组计算、时间序列分析、滑动窗口计算等。
数据可视化结合了 Matplotlib 等可视化库,方便绘制各种类型的图表,如折线图、散点图、柱状图等,用于数据可视化和分析展示。
高性能计算基于 NumPy 实现,内部使用了高效的数据结构和算法,能够快速处理大规模数据,提高计算效率。
灵活性和扩展性提供了丰富的功能和灵活的接口,可以根据需求进行定制和扩展,支持与其他库和工具的集成。

数据准备

假设已经有了包含股票收盘价数据的DataFrame,现在将其命名为data,并包含一列名为'Close'的数据。以下是一个示例数据集:

data = pd.DataFrame({'Close': [37.09, 34.61, 33.4, 36.74, 36.69, 36.99, 36.72, 36.82, 38.17, 37.65, 38.75, 38.02, 36.73, 36.98, 36.97,38.45, 37.54, 37.52, 38.02, 37.04, 33.39, 35.5, 35.1, 33.46, 34.33, 34.19, 31.54, 31.03, 33.15, 33.3,34.36, 33.9, 32.9, 34.01, 37.41, 37.53, 38.1, 35.9, 36.12, 36.52, 36.08, 35.4, 35.74, 35.81, 35.37,33.14, 33.22, 32.6, 32.45, 31.68, 33.76, 33.41, 33.63, 33.29, 34.2, 32.35, 32.03, 32.19, 32.36, 33.3,32.37, 31.92, 32.18, 31.8, 29.75, 27.98, 28.23, 26.78, 27.06, 26.52, 27.52, 27.82, 27.8, 26.87, 25.84,25.36, 24.69, 23.79, 24.36, 23.91, 24.72, 23.62, 23.63, 22.9, 21.86, 23.15, 22.7, 21.68, 22.24, 21.81,23.99, 22.62, 20.84, 20.16, 18.89, 19.07, 18.26, 16.44, 16.76,17.06]
})

计算移动平均线

可以使用pandas的rolling()mean()函数来计算移动平均线。假设需要计算12天和26天的移动平均线,可以这样做:

data['Short_MA'] = data['Close'].rolling(window=12).mean()
data['Long_MA'] = data['Close'].rolling(window=26).mean()

计算MACD指标

接下来,可以计算MACD指标。首先,需要计算DIF线,它是短期移动平均线减去长期移动平均线。然后,计算DEA线,它是对DIF线进行移动平均。最后,MACD线是DIF线与DEA线的差。可以按照以下步骤来计算:

data['DIF'] = data['Short_MA'] - data['Long_MA']
data['DEA'] = data['DIF'].rolling(window=9).mean()
data['MACD'] = data['DIF'] - data['DEA']

结果展示

最后,将结果打印输出,以便进行进一步分析或可视化。

print(data[['Close', 'Short_MA', 'Long_MA', 'DIF', 'DEA', 'MACD']])

完整代码

import pandas as pd# 假设data是包含收盘价的DataFrame,且有一列'Close'
data = pd.DataFrame({'Close': [37.09, 34.61, 33.4, 36.74, 36.69, 36.99, 36.72, 36.82, 38.17, 37.65, 38.75, 38.02, 36.73, 36.98, 36.97,38.45, 37.54, 37.52, 38.02, 37.04, 33.39, 35.5, 35.1, 33.46, 34.33, 34.19, 31.54, 31.03, 33.15, 33.3,34.36, 33.9, 32.9, 34.01, 37.41, 37.53, 38.1, 35.9, 36.12, 36.52, 36.08, 35.4, 35.74, 35.81, 35.37,33.14, 33.22, 32.6, 32.45, 31.68, 33.76, 33.41, 33.63, 33.29, 34.2, 32.35, 32.03, 32.19, 32.36, 33.3,32.37, 31.92, 32.18, 31.8, 29.75, 27.98, 28.23, 26.78, 27.06, 26.52, 27.52, 27.82, 27.8, 26.87, 25.84,25.36, 24.69, 23.79, 24.36, 23.91, 24.72, 23.62, 23.63, 22.9, 21.86, 23.15, 22.7, 21.68, 22.24, 21.81,23.99, 22.62, 20.84, 20.16, 18.89, 19.07, 18.26, 16.44, 16.76,17.06]
})# 计算短期(12天)和长期(26天)的移动平均线
data['Short_MA'] = data['Close'].rolling(window=12).mean()
data['Long_MA'] = data['Close'].rolling(window=26).mean()
# 计算DIF线:短期移动平均线减去长期移动平均线
data['DIF'] = data['Short_MA'] - data['Long_MA']
# 计算DEA线:对DIF线进行移动平均
data['DEA'] = data['DIF'].rolling(window=9).mean()
# 计算MACD线:DIF线与DEA线的差
data['MACD'] = data['DIF'] - data['DEA']
# 显示结果
print(data[['Close', 'Short_MA', 'Long_MA', 'DIF', 'DEA', 'MACD']])

演示

在这里插入图片描述

这篇关于利用Python和pandas库进行股票技术分析:移动平均线和MACD指标的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701383

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装