基于PaddlePaddle的飞桨论文解读:StarGAN v2: Diverse Image Synthesis for Multiple Domains

本文主要是介绍基于PaddlePaddle的飞桨论文解读:StarGAN v2: Diverse Image Synthesis for Multiple Domains,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

 

摘要

StarGAN v2网络架构

实验 

1.Baselines

2.数据集

3.评价指标

实验结果分析

1.个别成分分析

2.多种图像合成方法的比较

结论

模型代码(model.py)  

主体代码(main.py)

总结


摘要

一个好的图像到图像的翻译模型应该学习不同视觉域之间的映射,同时满足以下特性:1)生成图像的多样性   2)多域的可伸缩性。现有的方法解决了这两个问题中的任何一个,其多样性有限,或者所有领域都有多个模型。我们提出了starganv2,一个单一的框架,它可以同时处理这两个问题,并在基线上显示出显著改进的结果。在CelebAHQ和一个新的动物面孔数据集(AFHQ)上的实验验证了我们在视觉质量、多样性和可扩展性方面的优势。为了更好地评估图像到图像的转换模型,我们发布了AFHQ,高质量的动物脸,具有较大的域间和域内差异。


StarGAN v2网络架构

  1. Generator
  2. Mapping network
  3. Style encoder 
  4. Discriminator


实验 

1.Baselines

我们使用MUNIT、DRIT和MSGAN作为Baselines,它们都学习两个域之间的多模映射。对于多域比较,我们为每对图像域多次训练这些模型。我们还将我们的方法与StarGAN进行了比较,StarGAN使用单个生成器学习多个域之间的映射。所有Baselines都是使用作者提供的实现进行训练的。

 

2.数据集

我们评估CelebA HQ上的StarGAN v2和我们新的AFHQ数据集,我们将CelebAHQ分为两个领域:雄性和雌性;AFHQ分为三个领域:猫、狗和野生动物。除域名标签外,我们不使用任何附加信息(如CelebA HQ的面部特征或AFHQ的品种),并让模型在没有监督的情况下学习样式等信息。为了公平比较,所有的图像都被调整到256×256分辨率,这是baseline中使用的最高分辨率。

 

3.评价指标

我们使用Frechet inception distance (FID)和learning perceptual image patch similarity (LPIPS)来评估生成图像的视觉质量和多样性。我们为数据集中的每对图像域计算FID和LPIPS,并报告它们的平均值。


实验结果分析

1.个别成分分析

使用CelebA-HQ来评估添加到baseline的StarGAN中的单个成分。表格给出了几种配置的FID和LPIPS,其中每个组件都是在StarGAN上累积添加的。每个配置的输入图像和相应生成的图像如图所示。baseline设置对应于StarGAN的基本设置,使用WGAN-GP、ACGAN鉴别器、深度级联为生成器提供目标域信息。如图所示,通过在输入图像上应用化妆品,原始StarGAN只产生一个局部变化。

我们首先通过用多任务鉴别器替换ACGAN鉴别器来改进baseline,允许生成器转换输入图像的全局结构,并且通过应用R1正则化并将深度连接转换为自适应实例规范化(AdaIN),进一步提高了训练的稳定性并构造了一个新的基线(C)。

 

 

 


 

 

2.多种图像合成方法的比较

  • 潜在引导合成

CelebAHQ与baseline模型相比,我们的方法合成的图像具有更高的视觉质量。此外,我们的方法是唯一能够成功地改变源图像的整个发型的模型,这需要非常大的努力(例如生成耳朵)。对于变化较大的AFHQ,基线的性能大大降低,而我们的方法仍然可以生成高质量和多样化的图像。

  • 参考指导合成

从目标域中抽取测试图像,并将它们馈送给每种方法的编码器网络。对于CelebA HQ,我们的方法成功地渲染了独特的样式(例如刘海、胡须、化妆品和发型),而其他方法大多与参考图像的颜色分布相匹配。对于更具挑战性的AFHQ,baseline模型会经历一个大的域转移。它们很难反映每个参考图像的风格,只与域匹配。相比之下,该模型渲染每个参考图像的不同风格(例如品

这篇关于基于PaddlePaddle的飞桨论文解读:StarGAN v2: Diverse Image Synthesis for Multiple Domains的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/700542

相关文章

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

MySQL的ALTER TABLE命令的使用解读

《MySQL的ALTERTABLE命令的使用解读》:本文主要介绍MySQL的ALTERTABLE命令的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、查看所建表的编China编程码格式2、修改表的编码格式3、修改列队数据类型4、添加列5、修改列的位置5.1、把列

Linux CPU飙升排查五步法解读

《LinuxCPU飙升排查五步法解读》:本文主要介绍LinuxCPU飙升排查五步法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录排查思路-五步法1. top命令定位应用进程pid2.php top-Hp[pid]定位应用进程对应的线程tid3. printf"%

解读@ConfigurationProperties和@value的区别

《解读@ConfigurationProperties和@value的区别》:本文主要介绍@ConfigurationProperties和@value的区别及说明,具有很好的参考价值,希望对大家... 目录1. 功能对比2. 使用场景对比@ConfigurationProperties@Value3. 核

Jupyter notebook安装步骤解读

《Jupyternotebook安装步骤解读》:本文主要介绍Jupyternotebook安装步骤,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、开始安装二、更改打开文件位置和快捷启动方式总结在安装Jupyter notebook 之前,确认您已安装pytho

Java中的StringUtils.isBlank()方法解读

《Java中的StringUtils.isBlank()方法解读》:本文主要介绍Java中的StringUtils.isBlank()方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录所在库及依赖引入方法签名方法功能示例代码代码解释与其他方法的对比总结StringUtils.isBl

对Django中时区的解读

《对Django中时区的解读》:本文主要介绍对Django中时区的解读方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景前端数据库中存储接口返回AI的解释问题:这样设置的作用答案获取当前时间(自动带时区)转换为北京时间显示总结背景设置时区为北京时间 TIM

Java中的内部类和常用类用法解读

《Java中的内部类和常用类用法解读》:本文主要介绍Java中的内部类和常用类用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录内部类和常用类内部类成员内部类静态内部类局部内部类匿名内部类常用类Object类包装类String类StringBuffer和Stri

JVM垃圾回收机制之GC解读

《JVM垃圾回收机制之GC解读》:本文主要介绍JVM垃圾回收机制之GC,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、死亡对象的判断算法1.1 引用计数算法1.2 可达性分析算法二、垃圾回收算法2.1 标记-清除算法2.2 复制算法2.3 标记-整理算法2.4