KAJIMA CORPORATION CONTEST 2024(AtCoder Beginner Contest 340)ABCDEF 视频讲解

本文主要是介绍KAJIMA CORPORATION CONTEST 2024(AtCoder Beginner Contest 340)ABCDEF 视频讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这场比较郁闷,C题短路,连续4次WA,导致罚时太多

A - Arithmetic Progression

Problem Statement

Print an arithmetic sequence with first term A A A, last term B B B, and common difference D D D.
You are only given inputs for which such an arithmetic sequence exists.

Constraints

1 ≤ A ≤ B ≤ 100 1 \leq A \leq B \leq 100 1AB100
1 ≤ D ≤ 100 1 \leq D \leq 100 1D100
There is an arithmetic sequence with first term A A A, last term B B B, and common difference D D D.
All input values are integers.

Input

The input is given from Standard Input in the following format:

A A A B B B D D D

Output

Print the terms of the arithmetic sequence with first term A A A, last term B B B, and common difference D D D, in order, separated by spaces.

Sample Input 1

3 9 2

Sample Output 1

3 5 7 9

The arithmetic sequence with first term 3 3 3, last term 9 9 9, and common difference 2 2 2 is ( 3 , 5 , 7 , 9 ) (3,5,7,9) (3,5,7,9).

Sample Input 2

10 10 1

Sample Output 2

10

The arithmetic sequence with first term 10 10 10, last term 10 10 10, and common difference 1 1 1 is ( 10 ) (10) (10).

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int A, B, C;cin >> A >> B >> C;for (int i = A; i <= B; i += C)cout << i << " ";return 0;
}

B - Append

Problem Statement

You have an empty sequence A A A. There are Q Q Q queries given, and you need to process them in the order they are given.

The queries are of the following two types:
1 x: Append x x x to the end of A A A.
2 k: Find the k k k-th value from the end of A A A. It is guaranteed that the length of A A A is at least k k k when this query is given.

Constraints

1 ≤ Q ≤ 100 1 \leq Q \leq 100 1Q100
In the first type of query, x x x is an integer satisfying 1 ≤ x ≤ 1 0 9 1 \leq x \leq 10^9 1x109.
In the second type of query, k k k is a positive integer not greater than the current length of sequence A A A.

Input

The input is given from Standard Input in the following format:

Q Q Q
q u e r y 1 \mathrm{query}_1 query1
q u e r y 2 \mathrm{query}_2 query2
⋮ \vdots
q u e r y Q \mathrm{query}_Q queryQ

Each query is in one of the following two formats:

1 1 1 x x x

2 2 2 k k k

Output

Print q q q lines, where q q q is the number of queries of the second type.

The i i i-th line should contain the answer to the i i i-th such query.

Sample Input 1

5
1 20
1 30
2 1
1 40
2 3

Sample Output 1

30
20

Initially, A A A is empty.
The first query appends 20 20 20 to the end of A A A, making A = ( 20 ) A=(20) A=(20).
The second query appends 30 30 30 to the end of A A A, making A = ( 20 , 30 ) A=(20,30) A=(20,30).
The answer to the third query is 30 30 30, which is the 1 1 1-st value from the end of A = ( 20 , 30 ) A=(20,30) A=(20,30).
The fourth query appends 40 40 40 to the end of A A A, making A = ( 20 , 30 , 40 ) A=(20,30,40) A=(20,30,40).
The answer to the fifth query is 20 20 20, which is the 3 3 3-rd value from the end of A = ( 20 , 30 , 40 ) A=(20,30,40) A=(20,30,40).

Solution

具体见文末视频。

Code

#include <bits/stdc++.h>
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int Q;cin >> Q;std::vector<int> S;while (Q --){int Op, X;cin >> Op >> X;if (Op == 1)S.push_back(X);elsecout << S[S.size() - X] << endl;}return 0;
}

C - Divide and Divide

Problem Statement

There is a single integer N N N written on a blackboard.

Takahashi will repeat the following series of operations until all integers not less than 2 2 2 are removed from the blackboard:
Choose one integer x x x not less than 2 2 2 written on the blackboard.
Erase one occurrence of x x x from the blackboard. Then, write two new integers ⌊ x 2 ⌋ \left \lfloor \dfrac{x}{2} \right\rfloor 2x and ⌈ x 2 ⌉ \left\lceil \dfrac{x}{2} \right\rceil 2x on the blackboard.
Takahashi must pay x x x yen to perform this series of operations.
Here, ⌊ a ⌋ \lfloor a \rfloor a denotes the largest integer not greater than a a a, and ⌈ a ⌉ \lceil a \rceil a denotes the smallest integer not less than a a a.
What is the total amount of money Takahashi will have paid when no more operations can be performed?

It can be proved that the total amount he will pay is constant regardless of the order in which the operations are performed.

Constraints

2 ≤ N ≤ 1 0 17 2 \leq N \leq 10^{17} 2N1017

Input

The input is given from Standard Input in the following format:

N N N

Output

Print the total amount of money Takahashi will have paid, in yen.

Sample Input 1

3

Sample Output 1

5

Here is an example of how Takahashi performs the operations:
Initially, there is one 3 3 3 written on the blackboard.
He chooses 3 3 3. He pays 3 3 3 yen, erases one 3 3 3 from the blackboard, and writes ⌊ 3 2 ⌋ = 1 \left \lfloor \dfrac{3}{2} \right\rfloor = 1 23=1 and ⌈ 3 2 ⌉ = 2 \left\lceil \dfrac{3}{2} \right\rceil = 2 23=2 on the blackboard.
There is one 2 2 2 and one 1 1 1 written on the blackboard.
He chooses 2 2 2. He pays 2 2 2 yen, erases one 2 2 2 from the blackboard, and writes ⌊ 2 2 ⌋ = 1 \left \lfloor \dfrac{2}{2} \right\rfloor = 1 22=1 and ⌈ 2 2 ⌉ = 1 \left\lceil \dfrac{2}{2} \right\rceil = 1 22=1 on the blackboard.
There are three 1 1 1s written on the blackboard.
Since all integers not less than 2 2 2 have been removed from the blackboard, the process is finished.
Takahashi has paid a total of 3 + 2 = 5 3 + 2 = 5 3+2=5 yen for the entire process, so print 5 5 5.

Sample Input 2

340

Sample Output 2

2888

Sample Input 3

100000000000000000

Sample Output 3

5655884811924144128

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>using namespace std;inline __int128 read()
{char ch = getchar();__int128 x = 0, cf = 1;while(ch < '0' || ch > '9') {if(ch == '-') cf = -1;ch = getchar();}while(ch >= '0' && ch <= '9') {x = (x << 3) + (x << 1) + (ch ^ 48);ch = getchar();}return x * cf;
}void write(__int128 x)
{if(x<0)putchar('-'),x=-x;if(x>9)write(x/10);putchar(x%10+'0');return;
}__int128 Quick_Pow(__int128 a, __int128 b)
{__int128 Result = 1;while (b){if (b & 1) Result = Result * a;a = a * a;b >>= 1;}return Result;
}signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);__int128 N = read();__int128 T = 0, T2 = 0;while (Quick_Pow(2, T + 1) <= 4 * N) T ++;while (Quick_Pow(2, T2 + 1) <= 2 * N) T2 ++;__int128 Result = N * T - Quick_Pow(2, T2);write(Result);return 0;
}

D - Super Takahashi Bros.

Problem Statement

Takahashi is playing a game.
The game consists of N N N stages numbered 1 , 2 , … , N 1,2,\ldots,N 1,2,,N. Initially, only stage 1 1 1 can be played.
For each stage i i i ( 1 ≤ i ≤ N − 1 1\leq i \leq N-1 1iN1 ) that can be played, you can perform one of the following two actions at stage i i i:
Spend A i A_i Ai seconds to clear stage i i i. This allows you to play stage i + 1 i+1 i+1.
Spend B i B_i Bi seconds to clear stage i i i. This allows you to play stage X i X_i Xi.
Ignoring the times other than the time spent to clear the stages, how many seconds will it take at the minimum to be able to play stage N N N?

Constraints

2 ≤ N ≤ 2 × 1 0 5 2 \leq N \leq 2\times 10^5 2N2×105
1 ≤ A i , B i ≤ 1 0 9 1 \leq A_i, B_i \leq 10^9 1Ai,Bi109
1 ≤ X i ≤ N 1 \leq X_i \leq N 1XiN
All input values are integers.

Input

The input is given from Standard Input in the following format:

N N N
A 1 A_1 A1 B 1 B_1 B1 X 1 X_1 X1
A 2 A_2 A2 B 2 B_2 B2 X 2 X_2 X2
⋮ \vdots
A N − 1 A_{N-1} AN1 B N − 1 B_{N-1} BN1 X N − 1 X_{N-1} XN1

Output

Print the answer.

Sample Input 1

5
100 200 3
50 10 1
100 200 5
150 1 2

Sample Output 1

350

By acting as follows, you will be allowed to play stage 5 5 5 in 350 350 350 seconds.
Spend 100 100 100 seconds to clear stage 1 1 1, which allows you to play stage 2 2 2.
Spend 50 50 50 seconds to clear stage 2 2 2, which allows you to play stage 3 3 3.
Spend 200 200 200 seconds to clear stage 3 3 3, which allows you to play stage 5 5 5.

Sample Input 2

10
1000 10 9
1000 10 10
1000 10 2
1000 10 3
1000 10 4
1000 10 5
1000 10 6
1000 10 7
1000 10 8

Sample Output 2

90

Sample Input 3

6
1000000000 1000000000 1
1000000000 1000000000 1
1000000000 1000000000 1
1000000000 1000000000 1
1000000000 1000000000 1

Sample Output 3

5000000000

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int SIZE = 8e5 + 10;int N;
int A[SIZE], B[SIZE], X[SIZE];
int h[SIZE], w[SIZE], e[SIZE], ne[SIZE], idx;
bool st[SIZE];
int dist[SIZE];inline void add(int a, int b, int c)
{e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx ++;
}inline int Dijkstra(int start, int finish)
{memset(dist, 0x3f, sizeof dist);priority_queue<PII, vector<PII>, greater<PII>> heap;heap.push({0, start});st[start] = 1;while (heap.size()){auto t = heap.top();heap.pop();int u = t.second, dis = t.first;for (int i = h[u]; ~i; i = ne[i])if (dist[e[i]] > w[i] + dis)dist[e[i]] = w[i] + dis, heap.push({dist[e[i]], e[i]});}if (dist[finish] == 0x3f3f3f3f) return -1;return dist[finish];
}signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);memset(h, -1, sizeof h);cin >> N;for (int i = 1; i < N; i ++){cin >> A[i] >> B[i] >> X[i];add(i, i + 1, A[i]), add(i, X[i], B[i]);}cout << Dijkstra(1, N) << endl;return 0;
}

E - Mancala 2

Problem Statement

There are N N N boxes numbered 0 0 0 to N − 1 N-1 N1. Initially, box i i i contains A i A_i Ai balls.
Takahashi will perform the following operations for i = 1 , 2 , … , M i=1,2,\ldots,M i=1,2,,M in order:
Set a variable C C C to 0 0 0.
Take out all the balls from box B i B_i Bi and hold them in hand.
While holding at least one ball in hand, repeat the following process:
Increase the value of C C C by 1 1 1.
Put one ball from hand into box ( B i + C ) m o d N (B_i+C) \bmod N (Bi+C)modN.
Determine the number of balls in each box after completing all operations.

Constraints

1 ≤ N ≤ 2 × 1 0 5 1 \leq N \leq 2\times 10^5 1N2×105
1 ≤ M ≤ 2 × 1 0 5 1 \leq M \leq 2\times 10^5 1M2×105
0 ≤ A i ≤ 1 0 9 0 \leq A_i \leq 10^9 0Ai109
KaTeX parse error: Expected 'EOF', got '&' at position 12: 0 \leq B_i &̲lt; N
All input values are integers.

Input

The input is given from Standard Input in the following format:

N N N M M M
A 0 A_0 A0 A 1 A_1 A1 … \ldots A N − 1 A_{N-1} AN1
B 1 B_1 B1 B 2 B_2 B2 … \ldots B M B_M BM

Output

Let X i X_i Xi be the number of balls in box i i i after completing all operations. Print X 0 , X 1 , … , X N − 1 X_0,X_1,\ldots,X_{N-1} X0,X1,,XN1 in this order, separated by spaces.

Sample Input 1

5 3
1 2 3 4 5
2 4 0

Sample Output 1

0 4 2 7 2

The operations proceed as follows:
Figure

Sample Input 2

3 10
1000000000 1000000000 1000000000
0 1 0 1 0 1 0 1 0 1

Sample Output 2

104320141 45436840 2850243019

Sample Input 3

1 4
1
0 0 0 0

Sample Output 3

1

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int SIZE = 2e5 + 10;int N, M;
int A[SIZE], B[SIZE];
struct Segment
{struct Node{int l, r;LL Sum, Max, Min, Lazy;}Tree[SIZE << 2];void Pushup(int u){Tree[u].Sum = Tree[u << 1].Sum + Tree[u << 1 | 1].Sum;Tree[u].Max = max(Tree[u << 1].Max, Tree[u << 1 | 1].Max);Tree[u].Min = min(Tree[u << 1].Min, Tree[u << 1 | 1].Min);}void Pushdown(int u){if (Tree[u].Lazy){Tree[u << 1].Max += Tree[u].Lazy;Tree[u << 1].Min += Tree[u].Lazy;Tree[u << 1].Sum += (LL)(Tree[u << 1].r - Tree[u << 1].l + 1) * Tree[u].Lazy;Tree[u << 1].Lazy += Tree[u].Lazy;Tree[u << 1 | 1].Max += Tree[u].Lazy;Tree[u << 1 | 1].Min += Tree[u].Lazy;Tree[u << 1 | 1].Sum += (LL)(Tree[u << 1 | 1].r - Tree[u << 1 | 1].l + 1) * Tree[u].Lazy;Tree[u << 1 | 1].Lazy += Tree[u].Lazy;Tree[u].Lazy = 0;}}void Build(int u, int l, int r){Tree[u] = {l, r};if (l == r) return;int mid = l + r >> 1;Build(u << 1, l, mid), Build(u << 1 | 1, mid + 1, r);}void Modify(int u, int l, int r, int d){if (Tree[u].l >= l && Tree[u].r <= r){Tree[u].Sum += (LL)(Tree[u].r - Tree[u].l + 1) * d;Tree[u].Max += d, Tree[u].Min += d;Tree[u].Lazy += d;return;}Pushdown(u);int mid = Tree[u].l + Tree[u].r >> 1;if (mid >= l) Modify(u << 1, l, r, d);if (mid < r) Modify(u << 1 | 1, l, r, d);Pushup(u);}int Query(int u, int l, int r, int k){if (Tree[u].l >= l && Tree[u].r <= r){if (k == 1) return Tree[u].Sum;else if (k == 2) return Tree[u].Max;else return Tree[u].Min;}Pushdown(u);long long mid = Tree[u].l + Tree[u].r >> 1, Result;if (k == 1) Result = 0;else if (k == 2) Result = -1e18;else Result = 1e18;if (mid >= l) Result = Query(u << 1, l, r, k);if (mid < r){if (k == 1) Result += Query(u << 1 | 1, l, r, k);else if (k == 2) Result = max(Result, Query(u << 1 | 1, l, r, k));else Result = min(Result, Query(u << 1 | 1, l, r, k));}return Result;}int Sum(int l, int r) { return Query(1, l, r, 1); }int Max(int l, int r) { return Query(1, l, r, 2); }int Min(int l, int r) { return Query(1, l, r, 3); }
}Tool;signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);cin >> N >> M;Tool.Build(1, 1, N);for (int i = 1; i <= N; i ++)cin >> A[i], Tool.Modify(1, i, i, A[i]);for (int i = 1; i <= M; i ++)cin >> B[i], B[i] ++;for (int i = 1; i <= M; i ++){int X = Tool.Sum(B[i], B[i]), Turn = X / N, Rest = X % N;Tool.Modify(1, 1, N, Turn);if (Rest && B[i] + Rest > N){if (B[i] + 1 <= N) Tool.Modify(1, B[i] + 1, N, 1);Tool.Modify(1, 1, Rest - N + B[i], 1);}else if (Rest) Tool.Modify(1, B[i] + 1, B[i] + Rest, 1);Tool.Modify(1, B[i], B[i], -X);}for (int i = 1; i <= N; i ++)cout << Tool.Sum(i, i) << " ";return 0;
}

F - S = 1

Problem Statement

You are given integers X X X and Y Y Y, which satisfy at least one of X ≠ 0 X \neq 0 X=0 and Y ≠ 0 Y \neq 0 Y=0.

Find a pair of integers ( A , B ) (A, B) (A,B) that satisfies all of the following conditions. If no such pair exists, report so.
− 1 0 18 ≤ A , B ≤ 1 0 18 -10^{18} \leq A, B \leq 10^{18} 1018A,B1018
The area of the triangle with vertices at points ( 0 , 0 ) , ( X , Y ) , ( A , B ) (0, 0), (X, Y), (A, B) (0,0),(X,Y),(A,B) on the x y xy xy-plane is 1 1 1.

Constraints

− 1 0 17 ≤ X , Y ≤ 1 0 17 -10^{17} \leq X, Y \leq 10^{17} 1017X,Y1017
( X , Y ) ≠ ( 0 , 0 ) (X, Y) \neq (0, 0) (X,Y)=(0,0)
X X X and Y Y Y are integers.

Input

The input is given from Standard Input in the following format:

X X X Y Y Y

Output

If there is a pair of integers ( A , B ) (A, B) (A,B) that satisfies the conditions, print it in the following format:

A A A B B B

Otherwise, print -1.

Sample Input 1

3 5

Sample Output 1

1 1

The area of the triangle with vertices at points ( 0 , 0 ) , ( 3 , 5 ) , ( 1 , 1 ) (0, 0), (3, 5), (1, 1) (0,0),(3,5),(1,1) is 1 1 1. Thus, ( A , B ) = ( 1 , 1 ) (A, B) = (1, 1) (A,B)=(1,1) satisfies the conditions.

Sample Input 2

-2 0

Sample Output 2

0 1

Sample Input 3

8752654402832944 -6857065241301125

Sample Output 3

-1

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;int Exgcd(int a, int b, int &x, int &y)
{if (!b){x = 1, y = 0;return a;}int d = Exgcd(b, a % b, y, x);y -= a / b * x;return d;
}signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int X, Y;cin >> X >> Y;if (((2 % __gcd(X, Y) + abs(__gcd(X, Y))) % __gcd(X, Y)) != 0)cout << -1 << endl;else{int A, B;int d = Exgcd(Y, X, A, B);cout << A * (2 / abs(d)) << " " << (-B) * (2 / abs(d)) << endl;}return 0;
}

G - Leaf Color

G题还没研究,等后面研究下。

视频题解

Atcoder Beginner Contest 340(A ~ F)


最后祝大家早日在这里插入图片描述

这篇关于KAJIMA CORPORATION CONTEST 2024(AtCoder Beginner Contest 340)ABCDEF 视频讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/700508

相关文章

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

嵌入式数据库SQLite 3配置使用讲解

《嵌入式数据库SQLite3配置使用讲解》本文强调嵌入式项目中SQLite3数据库的重要性,因其零配置、轻量级、跨平台及事务处理特性,可保障数据溯源与责任明确,详细讲解安装配置、基础语法及SQLit... 目录0、惨痛教训1、SQLite3环境配置(1)、下载安装SQLite库(2)、解压下载的文件(3)、

Java进程CPU使用率过高排查步骤详细讲解

《Java进程CPU使用率过高排查步骤详细讲解》:本文主要介绍Java进程CPU使用率过高排查的相关资料,针对Java进程CPU使用率高的问题,我们可以遵循以下步骤进行排查和优化,文中通过代码介绍... 目录前言一、初步定位问题1.1 确认进程状态1.2 确定Java进程ID1.3 快速生成线程堆栈二、分析

javascript fetch 用法讲解

《javascriptfetch用法讲解》fetch是一个现代化的JavaScriptAPI,用于发送网络请求并获取资源,它是浏览器提供的全局方法,可以替代传统的XMLHttpRequest,这篇... 目录1. 基本语法1.1 语法1.2 示例:简单 GET 请求2. Response 对象3. 配置请求

Java Stream.reduce()方法操作实际案例讲解

《JavaStream.reduce()方法操作实际案例讲解》reduce是JavaStreamAPI中的一个核心操作,用于将流中的元素组合起来产生单个结果,:本文主要介绍JavaStream.... 目录一、reduce的基本概念1. 什么是reduce操作2. reduce方法的三种形式二、reduce

CSS引入方式和选择符的讲解和运用小结

《CSS引入方式和选择符的讲解和运用小结》CSS即层叠样式表,是一种用于描述网页文档(如HTML或XML)外观和格式的样式表语言,它主要用于将网页内容的呈现(外观)和结构(内容)分离,从而实现... 目录一、前言二、css 是什么三、CSS 引入方式1、行内样式2、内部样式表3、链入外部样式表四、CSS 选

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++