【Java源码分析】Android-SparseArray源码分析

2024-02-11 08:32

本文主要是介绍【Java源码分析】Android-SparseArray源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

类的定义

public class SparseArray<E> implements Cloneable {}

将int映射为对象,比HashMap更节省内存。一方面是避免了对key的自动装箱;另外一个方面是它的键值对不依赖于外部的实体对象来保存键值映射而HashMap需要额外的存储空间来保存键值对之间的映射关系。

  1. 该容器将映射存储在一个数组数据结构中,使用二分查找找到对应的key.这种设计不太适合于存储大量的数据。由于查找的时候需要进行二分查找,添加和删除的时候需要插入和删除数组中的实体,因此时间效率上并不高效。在只有几百个键值对的情况下,性能损失低于Hashmap的50%
  2. 为了弥补性能上的损失,在删除元素的时候容器实现了一个优化。仅仅将该实体标记为已删除,而不是在数组中执行实际的删除操作。这样被标记为删除的实体,可以被相同的key对应的实体复用。或者不复用而是在一段时间之后统一进行内存的回收。这个思路有点像内存回收策略中的标记清除
  3. 可以使用keyAt()和valueAt()对SparseArray进行迭代
  4. 由于按key查找的时候使用的是二分查找,那么key是有序的,所以使用keyAt(i)的时候,对应的从大到小的i得到的key也是从大到小的

主要成员变量

private int[] mKeys;
private Object[] mValues;
private int mSize;

构造函数

public SparseArray() {this(10);
}public SparseArray(int initialCapacity) {if (initialCapacity == 0) {mKeys = EmptyArray.INT;mValues = EmptyArray.OBJECT;} else {mValues = ArrayUtils.newUnpaddedObjectArray(initialCapacity);mKeys = new int[mValues.length];}mSize = 0;
}

构造函数中如果指定initialCapacity为0,那么不会做实际的内存分配操作

get方法

public E get(int key) {return get(key, null);
}@SuppressWarnings("unchecked")
public E get(int key, E valueIfKeyNotFound) {int i = ContainerHelpers.binarySearch(mKeys, mSize, key);if (i < 0 || mValues[i] == DELETED) {return valueIfKeyNotFound;} else {return (E) mValues[i];}
}

查找指定的key对应的值,如果无法查找到该key对应的键值对,那么返回null或者指定的值

删除

// 1
public void delete(int key) {int i = ContainerHelpers.binarySearch(mKeys, mSize, key);if (i >= 0) {if (mValues[i] != DELETED) {mValues[i] = DELETED;mGarbage = true;}}
}// 2
public void remove(int key) {delete(key);
}// 3
public E removeReturnOld(int key) {int i = ContainerHelpers.binarySearch(mKeys, mSize, key);if (i >= 0) {if (mValues[i] != DELETED) {final E old = (E) mValues[i];mValues[i] = DELETED;mGarbage = true;return old;}}return null;
}// 4
public void removeAt(int index) {if (mValues[index] != DELETED) {mValues[index] = DELETED;mGarbage = true;}
}// 5
public void removeAtRange(int index, int size) {final int end = Math.min(mSize, index + size);for (int i = index; i < end; i++) {removeAt(i);}
}

删除指定的key对应的键值对。第二个方法和第一个方法是一样的,只是名字不一样。低三个方法会返回该key对应的值。第四个是根据下标删除,前面的删除方法中都有一个二分查找对应下标的过程

添加操作

public void put(int key, E value) {int i = ContainerHelpers.binarySearch(mKeys, mSize, key);if (i >= 0) {mValues[i] = value;} else {i = ~i;if (i < mSize && mValues[i] == DELETED) {mKeys[i] = key;mValues[i] = value;return;}if (mGarbage && mSize >= mKeys.length) {gc();// Search again because indices may have changed.i = ~ContainerHelpers.binarySearch(mKeys, mSize, key);}mKeys = GrowingArrayUtils.insert(mKeys, mSize, i, key);mValues = GrowingArrayUtils.insert(mValues, mSize, i, value);mSize++;}
}   

添加新的键值对,如果对应的key已经存在,那么替换该key对应的旧值。注意在查找失败的时候,也就是下标小于0的时候,进行了按位取反的一个操作i = ~i;不是很清楚这里为什么不是直接取反而是按位取反。另外在添加之后会根据实际的占用情况决定是否进行GC,注意这里的GC仅仅是进行了一次数组的紧缩操作,把标记为删除的实体都给实际的清除掉

private void gc() {// Log.e("SparseArray", "gc start with " + mSize);int n = mSize;int o = 0;int[] keys = mKeys;Object[] values = mValues;for (int i = 0; i < n; i++) {Object val = values[i];if (val != DELETED) {if (i != o) {keys[o] = keys[i];values[o] = val;values[i] = null;}o++;}}mGarbage = false;mSize = o;// Log.e("SparseArray", "gc end with " + mSize);
}

获取大小

public int size() {if (mGarbage) {gc();}return mSize;
}

由于前面描述的,SparseArray采用了一个标记删除的加速方法,所以在获取大小的时候需要先实际的清除一遍然后获取真实的大小。

根据下标获取key和value

public int keyAt(int index) {if (mGarbage) {gc();}return mKeys[index];
}@SuppressWarnings("unchecked")
public E valueAt(int index) {if (mGarbage) {gc();}return (E) mValues[index];
}

上述方法分别根据下标返回该下标对应的键值对的key或者value,注意index需要在0-size()-1范围内;此外还需要判断是否执行gc()

根据key或者value获取对应的下标

public int indexOfKey(int key) {if (mGarbage) {gc();}return ContainerHelpers.binarySearch(mKeys, mSize, key);
}public int indexOfValue(E value) {if (mGarbage) {gc();}for (int i = 0; i < mSize; i++)if (mValues[i] == value)return i;return -1;
}

两个方法实现的略微不一样,因为键值对中对键的查找要更加频繁,所以使用了二分查找,而使用值进行查找的机会比较少,所以直接使用for循环。如果查找到了对应的下标,就返回,否则返回负数

清空容器

public void clear() {int n = mSize;Object[] values = mValues;for (int i = 0; i < n; i++) {values[i] = null;}mSize = 0;mGarbage = false;
}

这里有一点不是很理解的是for循环中为什么不是mValues[i] = null;使用一个引用values[]的意义在哪里

追加

public void append(int key, E value) {if (mSize != 0 && key <= mKeys[mSize - 1]) {put(key, value);return;}if (mGarbage && mSize >= mKeys.length) {gc();}mKeys = GrowingArrayUtils.append(mKeys, mSize, key);mValues = GrowingArrayUtils.append(mValues, mSize, value);mSize++;
}

该操作如果要插入的key介于最大的key和最小的key之间,那么直接执行普通的put操作,如果大于最大的key,直接追加到尾部

补充一直用到的二分查找

// This is Arrays.binarySearch(), but doesn't do any argument validation.
static int binarySearch(int[] array, int size, int value) {int lo = 0;int hi = size - 1;while (lo <= hi) {final int mid = (lo + hi) >>> 1;final int midVal = array[mid];if (midVal < value) {lo = mid + 1;} else if (midVal > value) {hi = mid - 1;} else {return mid;  // value found}}return ~lo;  // value not present
}

比较基本的一个二分查找算法,数据结构上都有的

这篇关于【Java源码分析】Android-SparseArray源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/699341

相关文章

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

SpringBoot整合liteflow的详细过程

《SpringBoot整合liteflow的详细过程》:本文主要介绍SpringBoot整合liteflow的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋...  liteflow 是什么? 能做什么?总之一句话:能帮你规范写代码逻辑 ,编排并解耦业务逻辑,代码

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

Spring Security中用户名和密码的验证完整流程

《SpringSecurity中用户名和密码的验证完整流程》本文给大家介绍SpringSecurity中用户名和密码的验证完整流程,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定... 首先创建了一个UsernamePasswordAuthenticationTChina编程oken对象,这是S