利用pytorch实现迁移学习之猫狗分类器(dog vs cat)

2024-02-11 07:08

本文主要是介绍利用pytorch实现迁移学习之猫狗分类器(dog vs cat),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

迁移学习

迁移学习(Transfer learning) 就是把已学训练好的模型参数迁移到新的模型来帮助新模型训练。考虑到大部分数据或任务是存在相关性的,所以通过迁移学习我们可以将已经学到的模型参数(也可理解为模型学到的知识)通过某种方式来分享给新模型从而加快并优化模型的学习效率不用像大多数网络那样从零学习。
本文使用VGG16模型用于迁移学习,最终得到一个能对猫狗图片进行辨识的CNN(卷积神经网络),测试集用来验证模型是否能够很好的工作。

猫狗分类器

本文使用迁移学习实现猫狗分类器。
数据集来自Kaggle比赛:Dogs vs. Cats Redux: Kernels Edition

利用pytorch实现迁移学习

首先进行图片的导入和预览

path = "dog_vs_cat"
transform = transforms.Compose([transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize([0.5,0.5,0.5], [0.5,0.5,0.5])])data_image = {x:datasets.ImageFolder(root = os.path.join(path,x),transform = transform)for x in ["train", "val"]}data_loader_image = {x:torch.utils.data.DataLoader(dataset=data_image[x],batch_size = 4,shuffle = True)for x in ["train", "val"]}

输入的图片需要分辨率为224*224,所以使用transform.CenterCrop(224)对原始图片进行裁剪。载入的图片训练集合为20000个和验证集合为5000个,原始图片全部为训练集合,需自己拆分出一部分验证集合,输出的Label,1代表为狗,0代表猫。

X_train,y_train = next(iter(data_loader_image["train"]))
mean = [0.5, 0.5, 0.5]
std = [0.5, 0.5, 0.5]
img = torchvision.utils.make_grid(X_train)
img = img.numpy().transpose((1,2,0))
img = img*std + meanprint([classes[i] for i in y_train])
plt.imshow(img)

图片预览
训练集的图片都为2242243。
迁移模型,打印出原始VGG模型结构为:

VGG((features): Sequential((0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace)(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace)(4): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(6): ReLU(inplace)(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(8): ReLU(inplace)(9): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU(inplace)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(13): ReLU(inplace)(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(15): ReLU(inplace)(16): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(18): ReLU(inplace)(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(20): ReLU(inplace)(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(22): ReLU(inplace)(23): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(25): ReLU(inplace)(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(27): ReLU(inplace)(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(29): ReLU(inplace)(30): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False))(classifier): Sequential((0): Linear(in_features=25088, out_features=4096, bias=True)(1): ReLU(inplace)(2): Dropout(p=0.5)(3): Linear(in_features=4096, out_features=4096, bias=True)(4): ReLU(inplace)(5): Dropout(p=0.5)(6): Linear(in_features=4096, out_features=1000, bias=True))
)

迁移过来的VGG16模型需适应新的需求,达到对猫狗图片很好的识别,因此改写VGG16的全连接层的最后一部分并且重新训练参数。
即使只是训练整个全连接层的全部参数,普通的电脑也会花费大量的时间,所以这里只训练全连接层的最后一层,就能达到很好的效果。

model.classifier = torch.nn.Sequential(torch.nn.Linear(25088, 4096),torch.nn.ReLU(),torch.nn.Dropout(p=0.5),torch.nn.Linear(4096, 4096),torch.nn.ReLU(),torch.nn.Dropout(p=0.5),torch.nn.Linear(4096, 2))for parma in model.parameters():parma.requires_grad = Falsefor index, parma in enumerate(model.classifier.parameters()):if index == 6:parma.requires_grad = Trueif use_gpu:model = model.cuda()cost = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.classifier.parameters())

parma.requires_grid = False是冻结参数,即使发生新的训练也不会进行参数的更新。
这里还对全连接层的最后一层进行了改写,torch.nn.Linear(4096, 2)使得最后输出的结果只有两个,即只需要对猫狗进行分辨。
optimizer = torch.optim.Adam(model.classifier.parameters())只对全连接层参数进行更新优化,loss计算依然使用交叉熵。
对改写后的模型进行查看:

VGG((features): Sequential((0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(1): ReLU(inplace)(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace)(4): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(6): ReLU(inplace)(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(8): ReLU(inplace)(9): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU(inplace)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(13): ReLU(inplace)(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(15): ReLU(inplace)(16): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(18): ReLU(inplace)(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(20): ReLU(inplace)(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(22): ReLU(inplace)(23): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False)(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(25): ReLU(inplace)(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(27): ReLU(inplace)(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(29): ReLU(inplace)(30): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), dilation=(1, 1), ceil_mode=False))(classifier): Sequential((0): Linear(in_features=25088, out_features=4096, bias=True)(1): ReLU()(2): Dropout(p=0.5)(3): Linear(in_features=4096, out_features=4096, bias=True)(4): ReLU()(5): Dropout(p=0.5)(6): Linear(in_features=4096, out_features=2, bias=True))
)

这里我使用纯cpu进行训练,因为速度贼慢,我只进行了对100张图片进行训练的demo,进行1次训练的结果为:

Epoch0/1
----------
Batch 5, Train Loss:1.2027, Train ACC:90.0000
Batch 10, Train Loss:0.6853, Train ACC:92.0000
Batch 15, Train Loss:0.7109, Train ACC:91.0000
Batch 20, Train Loss:0.5332, Train ACC:93.0000
Batch 25, Train Loss:0.5215, Train ACC:94.0000
Batch 30, Train Loss:0.4346, Train ACC:95.0000
Batch 35, Train Loss:0.4213, Train ACC:95.0000
Batch 40, Train Loss:0.3748, Train ACC:95.0000
Batch 45, Train Loss:0.3541, Train ACC:95.0000
Batch 50, Train Loss:0.3501, Train ACC:94.0000
train Loss:0.3501, Correct:94.0000
val Loss:0.9151, Correct:88.0000
Training time is:6m 4s

看到训练的Loss为0.3501, Accuraty准确率为94%。验证集的Loss为0.9151,Accuraty准确率为88%。这只是100张图片的一次训练,更加多的图片以及多次的训练可能会得到一个更加好的结果。

随机输入测试集合产看预测结果:
预测结果
可以看到预测结果没有出现错误,本文输入时采用了随机裁剪,如果对原始图片进行缩放可能会提升模型的预测准确率,此外还可以增加数据个数、训练次数、数据增强处理。
完整代码链接:xiutangseeker/dog_vs_cat

这篇关于利用pytorch实现迁移学习之猫狗分类器(dog vs cat)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/699155

相关文章

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句

Mybatis的分页实现方式

《Mybatis的分页实现方式》MyBatis的分页实现方式主要有以下几种,每种方式适用于不同的场景,且在性能、灵活性和代码侵入性上有所差异,对Mybatis的分页实现方式感兴趣的朋友一起看看吧... 目录​1. 原生 SQL 分页(物理分页)​​2. RowBounds 分页(逻辑分页)​​3. Page

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

MYSQL查询结果实现发送给客户端

《MYSQL查询结果实现发送给客户端》:本文主要介绍MYSQL查询结果实现发送给客户端方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql取数据和发数据的流程(边读边发)Sending to clientSending DataLRU(Least Rec

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构