#单调队列,动态规划,斜率优化#hdu 3507 Print Article

2024-02-11 06:08

本文主要是介绍#单调队列,动态规划,斜率优化#hdu 3507 Print Article,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目

一篇文章在打印k个需花费
这里写图片描述
m是常数,问最少花费多少就可以打完一篇文章


分析

对于 x 1 &lt; x x1&lt;x x1<x and x 2 &lt; x x2&lt;x x2<x
可得 d p [ x ] = d p [ x 1 ] + ( s u m [ x ] − s u m [ x 1 − 1 ] ) 2 + m dp[x]=dp[x1]+(sum[x]-sum[x1-1])^2+m dp[x]=dp[x1]+(sum[x]sum[x11])2+m
d p [ x ] = d p [ x 2 ] + ( s u m [ x ] − s u m [ x 2 − 1 ] ) 2 + m dp[x]=dp[x2]+(sum[x]-sum[x2-1])^2+m dp[x]=dp[x2]+(sum[x]sum[x21])2+m
但是 O ( n 2 ) O(n^2) O(n2)会超时
x 1 &lt; x 2 x1&lt;x2 x1<x2 and d p ( x 1 ) &lt; d p ( x 2 ) dp(x1)&lt;dp(x2) dp(x1)<dp(x2)
变形可得
d p [ x 2 ] + s u m [ x 2 − 1 ] 2 − d p [ x 1 ] − s u m [ x 1 − 1 ] 2 2 ( s u m [ x 2 − 1 ] − s u m [ x 1 − 1 ] ) &lt; s u m [ x ] \dfrac{dp[x2]+sum[x2-1]^2-dp[x1]-sum[x1-1]^2}{2(sum[x2-1]-sum[x1-1])}&lt;sum[x] 2(sum[x21]sum[x11])dp[x2]+sum[x21]2dp[x1]sum[x11]2<sum[x]
这里写图片描述
所以如果ANSWER(BC)<=sum[x],证明B点劣于C点,可以去掉B点。否则ANSWER(BC)>sum[x],如果ANSWER(AB)>=ANSWER(BC),则有ANSWER(AB)>sum[x],证明A点优于B点,可去掉B点。所以单调队列维护下凸壳


代码

#include <cstdio>
using namespace std;
typedef unsigned long long ull;
int n,m,q[500001],head,tail; ull sum[500001],f[500001];
ull in(){ull ans=0; char c=getchar();while (c<48||c>57) c=getchar();while (c>47&&c<58) ans=ans*10+c-48,c=getchar();return ans;
}
ull print(ull ans){if (ans>9) print(ans/10); putchar(ans%10+48);}
ull up(int i,int j){return f[i]+sum[i]*sum[i]-f[j]-sum[j]*sum[j];}//分子
ull down(int i,int j){return (sum[i]-sum[j])<<1;}//分母
ull dp(int i,int j){return f[j]+(sum[i]-sum[j])*(sum[i]-sum[j])+m;}//dp的答案
int main(){while (scanf("%d%d",&n,&m)==2){f[0]=q[head=tail=1]=0;for (register int i=1;i<=n;i++){sum[i]=sum[i-1]+in();while (head<tail&&up(q[head+1],q[head])<=sum[i]*down(q[head+1],q[head])) head++;f[i]=dp(i,q[head]);while (head<tail&&up(i,q[tail])*down(q[tail],q[tail-1])<=up(q[tail],q[tail-1])*down(i,q[tail])) tail--;//答案更优q[++tail]=i;} print(f[n]); putchar('\n');}return 0;
}

这篇关于#单调队列,动态规划,斜率优化#hdu 3507 Print Article的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/699010

相关文章

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

Java中常见队列举例详解(非线程安全)

《Java中常见队列举例详解(非线程安全)》队列用于模拟队列这种数据结构,队列通常是指先进先出的容器,:本文主要介绍Java中常见队列(非线程安全)的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一.队列定义 二.常见接口 三.常见实现类3.1 ArrayDeque3.1.1 实现原理3.1.2

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可