poj3264(区间最值问题RMQ)

2024-02-11 05:08
文章标签 问题 区间 rmq 最值 poj3264

本文主要是介绍poj3264(区间最值问题RMQ),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目大意:给出一串数字,然后给出一个区间a b,输出从a到b的最大的数和最小的数的差。

N(1 ≤ N ≤ 50000), Q(1 ≤ Q ≤ 200000);N为数字个数,1 ≤每个数 ≤ 1,000,000。。。如:
输入:
6 3
1
7
3
4
2
5
1 5
4 6
2 2
输出:
6
3
0

解题方法:用线段树和稀疏表均可以做。

  • 线段树
#include <cstdio>
#include <algorithm>
using namespace std;
///
const int MAX_N = 5e4 + 5;
const int INF = 0x3f3f3f3f;
typedef pair<int, int> P;
///
P dat[4 * MAX_N];//存储线段树的全局数组
int n;
//初始化
void init(int N) {n = 1;while (n < N) n <<= 1;//简单起见,把元素个数扩大到2的幂for (int i = 0; i < 2 * n - 1; ++i) {dat[i].first = INF;//存储区间最小值dat[i].second = -INF;//存储区间最大值}
}
//把第k个值更新为x
void update(int k, int x) {k += n - 1;dat[k] = P(x, x);while (k > 0) {//向上更新k = (k - 1) / 2;dat[k].first = min(dat[2 * k + 1].first, dat[2 * k + 2].first);dat[k].second = max(dat[2 * k + 1].second, dat[2 * k + 2].second);}
}
//查询
P query(int a, int b, int k, int l, int r) {//k是节点编号if (a <= l && r <= b) return dat[k];if (a > r || b < l) return P(INF, -INF);P vl = query(a, b, 2 * k + 1, l, (l + r) / 2);P vr = query(a, b, 2 * k + 2, (l + r) / 2 + 1, r);return P(min(vl.first, vr.first), max(vl.second, vr.second));
}
int main() {int N, Q;scanf("%d%d", &N, &Q);init(N);for (int i = 0; i < N; ++i) {int x;scanf("%d", &x);update(i, x);}for (int i = 0; i < Q; ++i) {int a, b;scanf("%d%d", &a, &b);P p = query(a - 1, b - 1, 0, 0, n - 1);printf("%d\n", p.second - p.first);}return 0;
}

n个元素的线段树的初始化的时间复杂度和空间复杂度都是O(n),对于n个元素,每一次操作的复杂度是O(logn)。

  • 稀疏表
    实质为动态规划。

预处理: 预处理是采用dp的思想,用f[i][j]表示区间[i,i+2j-1]中的最大值(即从i开始,长度为2j的闭区间)。开始时,f[i][0] 就是区间[i][i]的值,即f[i][0] = num[i],好了,初始值找到了,下面是状态转移方程:f[i][j] = max (f[i][j-1],f[i+2(j-1)][j-1])。即把[i,i+2j-1]区间分为[i,i+2(j-1)-1]和[j+2(j-1),j+2(j-1)+2(j-1)-1]两个等长度的区间(区间长度都是2^(j-1)),有了初始值和状态转移方程,我们可以自底向上递推出所有的f[i][j]的值。边界值的处理: 由于区间最大长度为n,所以二维边界最大值为log(n)/log(2.0);一维边界为i+2^j-1<=n。查询: 假设要查询区间[a,b]的最大值,由于区间的长度很可能不是2的整数幂,所以我们要把区间划分为长度为2的整数幂的两部分,而且这两个的并集必须是[a,b]。为了实现这个方案,我们需要先求出一个最大k,使得2k<=(b-a+1),这样就可以把区间分为两部分[a,a+2k-1]和[b-2^k+1,b],使它们既能不超过[a,b]区间的范围,又能把区间全部覆盖。于是,[a,b]区间的最大值就等于上述两个区间的最大值中最大的那个。

#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std;
//
const int INF = 0x3f3f3f3f;
const int MAX_N = 5e4 + 5;
typedef pair<int, int> P;
/
int num[MAX_N];
P dp[MAX_N][20];
void init(int n) {int k = (int)(log(n) / log(2.0));for (int i = 0; i < n; ++i)for (int j = 0; j <= k; ++j) {dp[i][j].first = INF;dp[i][j].second = -INF;}       
}
void creat(int n) {for (int i = 0; i < n; ++i)dp[i][0].first = dp[i][0].second = num[i];int k = (int)(log(n) / log(2.0));for (int j = 1; j <= k; ++j)for (int i = 0; i + (1 << j) - 1 < n; ++i) {dp[i][j].first = min(dp[i][j - 1].first, dp[i + (1 << (j - 1))][j - 1].first);dp[i][j].second = max(dp[i][j - 1].second, dp[i + (1 << (j - 1))][j - 1].second);}
}
P query(int s, int e) {int k = (int)(log(e - s + 1) / log(2.0));return P(min(dp[s][k].first, dp[e - (1 << k) + 1][k].first), max(dp[s][k].second, dp[e - (1 << k) + 1][k].second));
}
int main() {int N, Q;scanf("%d%d", &N, &Q);for (int i = 0; i < N; ++i)scanf("%d", &num[i]);init(N);creat(N);for (int i = 0; i < Q; ++i) {int a, b;scanf("%d%d", &a, &b);P p = query(a - 1, b - 1);printf("%d\n", p.second - p.first);}return 0;
}

Sparse Table 算法可以在O(nlogn)的预处理以后实现O(1)的查询效率,从而解决了数很多(如大于100万)的RMQ问题。基于ST的RMQ在预处理时的时间复杂度和空间复杂度都达到了O(nlogn),与线段树的RMQ相比,无法高效地对值进行更新。
参考资料:http://blog.csdn.net/xiao_niu_1/article/details/7393196

这篇关于poj3264(区间最值问题RMQ)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/698910

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

nginx中端口无权限的问题解决

《nginx中端口无权限的问题解决》当Nginx日志报错bind()to80failed(13:Permissiondenied)时,这通常是由于权限不足导致Nginx无法绑定到80端口,下面就来... 目录一、问题原因分析二、解决方案1. 以 root 权限运行 Nginx(不推荐)2. 为 Nginx

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原