机器学习2--逻辑回归(案列)

2024-02-11 02:04

本文主要是介绍机器学习2--逻辑回归(案列),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

糖尿病数据线性回归预测

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_diabetes
diabetes=load_diabetes()
data=diabetes['data']
target=diabetes['target']
feature_names=diabetes['feature_names']
data.shape
df = pd.DataFrame(data, columns=feature_names)
df.head()
# 抽取训练数据和预测数据
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(data,target,test_size=0.2)
x_train.shape,x_test.shape
# 创建模型
from sklearn.linear_model import LinearRegression
linear=LinearRegression()
linear.fit(x_train,y_train)
# 预测
y_pred=linear.predict(x_test)
y_pred
# 得分: 回归的得分很低
#linear.score(x_test,y_test)
### 线性回归评估指标
#- mean_squared_error 均方误差
from sklearn.metrics import mean_squared_error as mse
# 均方误差
mse(y_test,y_pred)
#### 求线性方程: y = WX + b 中的W系数和截距b
# w系数
linear.coef_
# 10个特征 就有10个系数
# b截距
linear.intercept_
#### 研究每个特征和标记结果之间的关系.来分析哪些特征对结果影响较大
plt.figure(figsize=(5*4, 2*4))for i, col in enumerate(df.columns):# 每一列数据data2 = df[col].copy()# 画子图ax = plt.subplot(2, 5, i+1)ax.scatter(data2, target)# 线性回归:对每一个特征进行回归分析linear2 = LinearRegression()linear2.fit(df[[col]], target)# 每个特征的系数w和截距b# y = wx + bw = linear2.coef_[0]b = linear2.intercept_# print(w, b)# 画直线x = np.linspace(data2.min(), data2.max(), 2)y = w * x + bax.plot(x, y, c='r')# 特征score = linear2.score(df[[col]], target)  # 模型得分ax.set_title(f'{col}: {round(score, 3)}', fontsize=16)
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
### 抛物线函数
# 抛物线函数
# f(x) = (x - 2)²  + 5# Python函数
f=lambda x:(x-2)**2+5
# 画图
x=np.linspace(-2,6,100)
y=f(x)
plt.plot(x,y)
#### 使用梯度下降算法 求 当x为多少时,函数f(x)的值最小
# ①对目标函数求导; 
# ②循环对参数更新;
# ①对目标函数求导; # 抛物线函数
# f(x) = (x - 2)²  + 5# 求导数
#  dx = 2x - 4
d = lambda x: 2 * x - 4
# ②循环对参数更新;
θ = 6
# 学习率 lr  : learning_rate 
lr=0.03
# 最大迭代次数
max_iter=100
θ_list = [θ]
# 循环
for i in range(max_iter):θ = θ - lr * d(θ)θ_list.append(θ)
θ_array = np.array(θ_list)
# 画图
x=np.linspace(-2,6,100)
y=f(x)
plt.figure(figsize=(4,5))
plt.plot(x,y)
plt.plot(θ_array,f(θ_array), marker='*')

Logistic Regression虽然名字里带“回归”,但是它实际上是一种分类方法,用于两分类问题(即输出只有两种)。首先需要先找到一个预测函数(h),显然,该函数的输出必须是两类值(分别代表两个类别),所以利用了*Logistic函数(或称为Sigmoid函数)*

#1实战手写数字识别
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# 逻辑回归: 分类
from sklearn.linear_model import LogisticRegression
# 使用KNN与Logistic回归两种方法
from sklearn.datasets import load_digits
digits=load_digits()
digits
data=digits['data']
target=digits['target']
feature_names=digits['feature_names']
target_names=digits['target_names']
imges=digits['images']
data.shape
imges.shape
pd.Series(target).unique()
feature_names
#划分数据集
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(data, target, test_size=0.2)
#使用逻辑回归
#创建模型,训练和预测
# C=1.0 :  越大表示越严格,对训练数据拟合更好,可能导致过拟合
#          越小表示不严格,对训练数据拟合不好,可能导致欠拟合
#
# solver : 逻辑回归的损失函数的一种进行优化的算法
#      {'lbfgs', 'liblinear', 'newton-cg', 'newton-cholesky', 'sag', 'saga'},
#    solver='lbfgs' 默认值
#    liblinear:一般适用于小数据集
#    sag,saga: 一般使用于大数据集,速度更快
#    其他是中等数据集
# 
#  max_iter=100: 最大迭代次数
#  
#  n_jobs=-1  表示使用的CPU核数,多进程处理,一般设置为CPU核数,-1表示时使用所有处理器
lr=LogisticRegression(C=1.0,solver='lbfgs',max_iter=100,n_jobs=-1)
#训练
%timeit lr.fit(x_train,y_train)
# 预测
%timeit lr.predict(x_test)
# 得分
lr.score(x_train,y_train)
lr.score(x_test,y_test)
# 导包使用datasets.make_blobs创建一系列点
#from sklearn.datasets import make_blobs
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_blobs
# n_samples=100,  样本数,行数
# n_features=2,   特征数,列数
# centers=None,  几堆点,默认是3
# cluster_std=1.0,  离散程度
data,target=make_blobs(n_samples=300,centers=4,cluster_std=1.0)
plt.scatter(data[:,0],data[:,1],c=target)
#设置三个中心点,随机创建100个点
#创建机器学习模型(逻辑斯蒂回归),训练数据
lr=LogisticRegression(max_iter=10000)  
lr.fit(data,target)
lr.score(data,target)
#分类后,并绘制边界图
x=np.array([1,2,3,4])
y=np.array([5,6,7,8,9])
X, Y = np.meshgrid(x, y)
# 让X,Y相交
XY=np.c_[X.reshape(-1),Y.reshape(-1)]
#  分别对x轴和y轴的数据等分成1000份
#  分别对x轴和y轴的数据等分成1000份
x = np.linspace(data[:, 0].min(), data[:, 0].max(), 1000)
y = np.linspace(data[:, 1].min(), data[:, 1].max(), 1000)X, Y = np.meshgrid(x, y)# ravel(): 扁平化
XY = np.c_[X.ravel(), Y.ravel()]
XY.shape
# 提供测试数据: XY
y_pred=lr.predict(XY)
y_pred.shape
# 画边界图
plt.pcolormesh(X,Y,y_pred.reshape(1000,1000))
plt.scatter(data[:,0],data[:,1],c=target,cmap='rainbow')

 

这篇关于机器学习2--逻辑回归(案列)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/698564

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Java逻辑运算符之&&、|| 与&、 |的区别及应用

《Java逻辑运算符之&&、||与&、|的区别及应用》:本文主要介绍Java逻辑运算符之&&、||与&、|的区别及应用的相关资料,分别是&&、||与&、|,并探讨了它们在不同应用场景中... 目录前言一、基本概念与运算符介绍二、短路与与非短路与:&& 与 & 的区别1. &&:短路与(AND)2. &:非短

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用