MATLAB环境下一维时间序列信号的同步压缩小波包变换

2024-02-10 19:28

本文主要是介绍MATLAB环境下一维时间序列信号的同步压缩小波包变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

时频分析相较于目前的时域、频域信号处理方法在分析时变信号方面,其主要优势在于可以同时提供时域和频域等多域信号信息,并清晰的刻画了频率随时间的变化规律,已被广泛用于医学工程、地震、雷达、生物及机械等领域。

线性时频分析方法是将信号分解为时域和频域中基的加权和,例如短时傅里叶变换STFT和小波变换WT。短时傅里叶变换利用短窗口沿时间尺度移动以对信号进行切片,可以获得每个片段的局部傅里叶谱,揭示信号的变化规律。由于海森堡不确定原理,STFT方法在达到最优时间位置时其时频分辨率较低,反之亦然。因此,该方法缺乏适应性,它只适用于分析在短时间窗尺度上的平稳信号,而不适用于分析信号中的高瞬态冲击信号。小波变换是一种重要的信号处理工具,利用可变窗同时兼顾高低频信号的分辨率,适用于非平稳信号分析。但也存在不足之处,小波变换对低频信号进行迭代分解,而对高频的细节信号没有进一步的处理。对于高频分量,小波变换具有较好的时间局域特性,但无法满足最佳频率分辨率的要求;对于低频分量,当达到最优频率分辨率时,而时间局部特性呈现出较差的状态。此外,小波变换还存在与母小波选择标准、边界失真、能量泄漏相关的问题。

二次时频分布主要属于Cohen类双线性时频能量分布,其中最常用的是Wigner-Ville分布及其变体。二次时频分布不包含任何窗函数,因此不受不确定性的影响,但是其交叉项在处理多分量信号中产生较大的影响。尽管这种干扰可以通过平滑处理来减弱,但平滑后的分布会变得模糊,降低时频分辨率。二次时频分析方法的理论中尽管有许多优良的性质,但是由于不能直接重构信号,限制了在实际问题中的应用。

为了提高时频分析的质量,众多学者已经开发了一些时频重分配方法。时频重分配方法是通过修改原始谱能量分布来提高原始线性或二次时频变换的可读性的后处理技术。重新分配后,频谱能量将集中在瞬时频率附近,避免了人为干预。Daubechies和Oberlin分别基于CWT和STFT提出了同步压缩变换SST。

SST方法是通过将时频系数压缩至瞬时频率的轨迹中进行设计的,提高了时频的分辨率并重建了原始信号。但在强噪声的干扰下SST方法的时频分辨率较低,并且由于其对真实瞬时频率分布的估计偏差而导致时频能量不集中。

同步压缩小波包变换方法首先将信号进行小波包变换得到小波包变换系数,然后求取信号的瞬时频率,最后对小波包变换系数沿信号瞬时频率方向进行压缩,从而将各频率成分清晰呈现于时频图中,可以提高时频分辨率。

程序运行环境为MATLAB R2018A,执行一维时间序列信号的同步压缩小波包变换,并给出了模拟信号和实际信号的例子。算法可迁移至金融时间序列,地震信号,语音信号,声信号,生理信号等一维时间序列信号。

部分代码如下:

% Inputs
%  x      input signal, a vector of length N
%
% Optional Inputs
%  is_real   Type of the transform
%          0: complex-valued wave packets
%          1: real-valued wave packets
%        [default set to 0]
%  is_unif   whether x is sampled on a uniform grid
%        0: No; 1: Yes
%  typeNUFFT  1: NUFFT by Air Force Lab
%        2: USFFT by E. Candes
%        3: NUFFT by L. Greengard and J.-Y. Lee
%        4: Direct non-uniform Fourier Transform
%  xo     non-uniform locations at which x is measured
%  NG     number of subsampled points in time
%  [R_low R_high]     The range of interested spectrum
%  rad     a parameter to adjust the size of supports of the mother wave packet in
%        the frequency domain, rad <= 2.
%  is_cos   Type of the window function
%          0: C^infinity window function
%          1: cosine window function
%        [default set to 0]
%  t_sc    scaling parameter for radius
%        [default set to 1-1/4]
%  red     redundancy parameter, red is a positive integer
%        [default set to 1]
%  epsl    threshold for instantaneous frequency estimates
%        [default set to 1e-2]
%  h      frequency band width per pixel in the synchrosqueezed
%        time-frequency representation
%        [default set to 1]
%  is_fac   0: do not increase the magnitude of high frequency wave
%        packet coefficients; 1: increase;
%        [default set to 1, better to visualize high frequency
%        instantaneous frequencies]
%  wedge_length_coarse
%        length of coarsest wedge
%        [default set to 4]
%
% Outputs
%  T_f     1D synchrosqueezed wave packet transform, a matrix with NG columns, each column represent frequency
%        information at a fixed time
%  coef    1D wave packet transform coefficients of x
%  kk     instantaneous frequency estimates from each wave packet
%        coefficient

出图如下:

这篇关于MATLAB环境下一维时间序列信号的同步压缩小波包变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/697890

相关文章

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Nginx搭建前端本地预览环境的完整步骤教学

《Nginx搭建前端本地预览环境的完整步骤教学》这篇文章主要为大家详细介绍了Nginx搭建前端本地预览环境的完整步骤教学,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录项目目录结构核心配置文件:nginx.conf脚本化操作:nginx.shnpm 脚本集成总结:对前端的意义很多

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

java时区时间转为UTC的代码示例和详细解释

《java时区时间转为UTC的代码示例和详细解释》作为一名经验丰富的开发者,我经常被问到如何将Java中的时间转换为UTC时间,:本文主要介绍java时区时间转为UTC的代码示例和详细解释,文中通... 目录前言步骤一:导入必要的Java包步骤二:获取指定时区的时间步骤三:将指定时区的时间转换为UTC时间步

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同