微机原理及应用->微处理器与总线

2024-02-10 18:40

本文主要是介绍微机原理及应用->微处理器与总线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

微处理器与总线

  • 一些英文
    • 8088/8086微处理器
      • 8086/8088 CPU的特点
      • 8088/8086的两种工作模式
        • 两种工作模式的选择
    • 8088的主要引线及内部结构
      • 主要引脚信号
        • 地址线和数据线
        • 主要控制信号(内存或接口控制,#WR,#RD,IO/#M,#DEN,DT/#R,ALE,RESET)
        • 外部同步控制信号(Ready)
        • 中断请求和响应信号(INTR,NMI,#INTA)
        • 总线保持信号(HOLD,HLDA)
        • 8086和8088引线功能区别
      • 8088内部结构
        • 执行单元 (EU)
          • 构成
          • 功能
        • 总线接口单元(BIU)
        • 结论
      • 8088内部寄存器
        • 类型
        • 8个通用寄存器
          • 数据寄存器
          • 地址指针寄存器
            • BX和BP在应用上的区别
          • 变址寄存器
        • 控制寄存器IP
        • 状态寄存器FR/Flags
          • 状态标志位(CF,OF,ZF,SF,PF,AF)
            • CF,OF ZF SF注意
          • 控制标志位
        • 段寄存器
      • 实地址模式下的存储器寻址
        • 内存储器管理
        • 内存地址变换
        • 内存单元的编址
          • 存储器的编址
        • 实地址模式下的存储地址变换
        • 段寄存器
        • 逻辑段与逻辑地址
        • 堆栈及堆栈段的使用
      • 总线
        • 总线时序
        • 总线
          • 总线结构
            • 单总线结构
            • 多总线结构
            • 面向CPU的双总线结构
            • 面向存储器的双总线结构
            • 现代微机中的多总线结构
          • 总线的基本功能
          • 总线的主要性能指标
      • 小结
        • 重点
        • 内部寄存器
        • 实地址模式下的存储器寻址

一些英文

ALE=Address Lock Enable地址锁存
BIU=Bus interface Unit总线接口部件
PC=Programming Counter程序计数器
IP=Instruction Pointer指令指针,同PC功能
ALU=Arithemetic Logic Unit 算数逻辑单元

中断请求和响应信号:
INTR=Interrupt Require
NMI=Non Maskable Interrupt
INTA=Interrput Answer

8088/8086微处理器

8086是十六位的处理器,但是为了兼容旧的程序,因此同时推出了相似的8位处理器8088,8086的数据总线是20位,8088是8位。
授课内容以8位芯片为例。

1.8088/8086 CPU能够实现指令并行流水工作的原因;

因为取指需要CPU和存储器通过总线交换内容,而译码和执行都在CPU内部,总线有空余,因此可以通过并行进一步提高效率。

2.实地址模式下的存储器地址变换原理;

今天很多存储器是保护模式,但也可以自行选择实地址模式。(这不是重点,只是提一下)

3.如何知道CPU当前工作状态及指令运算结果的特征?

8086/8088 CPU的特点

特点是指和过去相比

采用并行流水线工作方式:通过设置指令预取队列实现,这是CPU内部结构决定的
在这里插入图片描述

对内存空间实行分段管理
将内存分为4个段并设置地址段寄存器,以实现对1MB空间的寻址

实模式存储器寻址
内存单元16位,对应物理地址也就越长,就好像酒店越高门牌号越长一样。寄存器、运算单元、总线上的信息全部都是16位的。
但即便是16位(216)体系的CPU,想要管理1MB(220)空间,显然是不大够用的,

支持协处理器

可以选择工作模式
协处理器主要的功能是帮助处理浮点数小数运算

8088/8086的两种工作模式

8088/8086可工作于两种模式下
{  最小模式   最大模式  \left\{\begin{array}{l}\text { 最小模式 } \\ \text { 最大模式 }\end{array}\right. { 最小模式  最大模式 
最小模式为单处理器模式,所有控制信号由微处理器产生
最大模式为多处理器模式,部分控制信号由外部总线控制器产生(用于包含协处理器的情况下)

最小模式结构图如下
在这里插入图片描述
地址信息→控制信息→数据信息

ALE要将送出去的信息锁在柜子里,因为原本的地址信息通道可能会被新的信息覆盖,就好像家里来客人,大家知道名字,谁进来都了解,但计算机里只有01,哪儿的01是哪儿的01,就得先记好它家在哪才行,不然新信息送过来,就忘了家哪儿的了

最大模式结构图如下
在这里插入图片描述

就是多出需要总线控制器产生一部分控制信息而已

两种工作模式的选择

8088是工作在最小还是最大模式由 M N / M X ‾ MN/\overline{MX} MN/MX引线的状态决定。

上横线的意思是,低电平有效,也就是0有效。

M N / M X ‾ = 0 MN/\overline{MX}=0 MN/MX=0一工作于最大模式
M N / M X ‾ = 1 MN/\overline{MX}=1 MN/MX=1一工作于最小模式

8088的主要引线及内部结构

大部分情况都工作在最小模式下,就以最小模式为例。( M N / M X ‾ = 1 MN/\overline{MX}=1 MN/MX=1

8088最小模式下的主要引脚信号 → 4组

  • 完成一次访问内存或接口所需要的主要信号(电源和地就不说了)
  • 外部同步控制信号
  • 中断请求和响应信号
  • 总线保持和响应信号

微机读取一条指令的工作过程

冯诺依曼结构中,编写的程序都储存在硬盘里,调用时,就会先编译成机器码写到内存中。
那么第一条怎么找呢,PC会产生一个地址,然后送到地址寄存器中,然后自身加一继续,直到取完。

在这里插入图片描述

微机读取一条指令的控制过程

读数据就取出来,读到指令就译码。
PC发出地址→命令→执行
数据包括指令、运算对象,不单单是操作数

  1. 发出读取数据所在的目标地址(地址信号
    内存储器单元地址
    I/O接口地址
  2. 发出读控制信号(控制信号
  3. 送出传输的数据(数据信号

主要引脚信号

地址线和数据线

地址信号(总线宽度是20位,8088和8086都是,也就是220=1M地址编码)
从前面读指令我们可以知道先有地址然后才有数据

A D 0 − A D 7 : \mathrm{AD}_{0}-\mathrm{AD}_{7}: AD0AD7: 低8位地址和低8位数据信号分时复用。在传送地 址信号时为单向,传送数据信号时为双向。

复用就是说不同的时间段可以有不同的功能
低8位在一次指令操作中先传送8位地址,然后传送8位数据(没有指令怎么知道要拿什么数据嘛,就像没菜单怎么点菜一样)

A 16 − A 19 : \mathrm{A}_{16}-\mathrm{A}_{19}: A16

这篇关于微机原理及应用->微处理器与总线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/697811

相关文章

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定