【万题详解】洛谷P1282 多米诺骨牌

2024-02-10 13:36

本文主要是介绍【万题详解】洛谷P1282 多米诺骨牌,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目

链接——题目在这里!!!

多米诺骨牌由上下 22 个方块组成,每个方块中有 1∼6 个点。现有排成行的上方块中点数之和记为 S1​,下方块中点数之和记为 S2​,它们的差为 ∣∣S1​−S2​。如图S1=6+1+1+1=9,S2=1+5+3+2=11,|S1​−S2​∣=2。每个多米诺骨牌可以旋转 180°,使得上下两个方块互换位置。请你计算最少旋转多少次才能使多米诺骨牌上下 2行点数之差达到最小。

对于图中的例子,只要将最后一个多米诺骨牌旋转 180°,即可使上下 2行点数之差为 0。

输入格式

输入文件的第一行是一个正整数 n(1≤n≤1000),表示多米诺骨牌数。接下来的 n 行表示 n 个多米诺骨牌的点数。每行有两个用空格隔开的正整数,表示多米诺骨牌上下方块中的点数 a 和 b,且 1≤a,b≤6。

输出格式

输出文件仅一行,包含一个整数。表示求得的最小旋转次数。

输入输出样例

输入 #1

4
6 1
1 5
1 3
1 2

输出 #1

1

解题思路

题目要求的是最小差值情况下的最小交换次数,那么我们把其中一个计入状态里。记交换次数好像不太好做(我没试过),所以我们要记的是差值。

但是差值是一个绝对值,好像也不是很好表示,所以我们再来转化一下。观察到每次交换只是把上下两个数交换,故前i个骨牌上下两行数的总和是不变的,所以我们只需记录其中一行数字的和就可以知道差值了。这样状态就好表示了。

f[i][j]表示前i个数字,第一行的数字和是j时,最小的交换次数。初始值所有f[i][j]都是无穷大,f[1][a[1]]=0,f[1][b[1]]=1。(a[]和b[]分别表示第一行和第二行的数字)

转移时,枚举每一个可能的和,共有6*n个,考虑当前一个交不交换即可:

if (j-a[i] >= 0) f[i][j] = min(f[i][j], f[i-1][j-a[i]]);  //当前不交换
if (j-b[i] >= 0) f[i][j] = min(f[i][j], f[i-1][j-b[i]]+1);  //当前交换

求答案时再枚举一下前n个骨牌第一行的和就好。

这样时间、空间复杂度均为O(n*n*6)。

我们发现,每一组骨牌对答案的贡献都是独立的,所以可以单独计算。

设计状态为f[i][j],表示处理到第i个骨牌,所有上面的数减去所有下面的数的值为j的最小旋转次数。因为每一组的差值不超过5,最多有1000组骨牌,所以j的范围是-5000~5000。处理时将j都加上5000,来处理负数下标~~【本来没有考虑到这个竟然也过了...果然玄学】~~

状态转移方程为f[i][j]=min(f[i-1][j-(a[i]-b[i])],f[i-1][j-(b[i]-a[i])]+1);

即如果不旋转,第i组骨牌的结果是a[i]-b[i],所以从f[i-1][j-(a[i]-b[i])]转移过来,答案不加,如果旋转,第i组骨牌的结果是b[i]-a[i],所以从f[i-1][j-(b[i]-a[i])]转移过来,答案+1。

剩下的就是统计答案了,按绝对值从小到大找,找到第一个有解的值就是答案,即差值最小时的答案,如果正负同时成立,就取最小值

AC

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1005,INF=0x3f3f3f3f;
int a[maxn], b[maxn];
int dp[maxn][10 * maxn]; 
int n;
int N = maxn * 5;
int main(){cin >> n;for(int i = 1; i <= n; i++){cin >> a[i] >> b[i];}memset(dp,INF, sizeof(dp));dp[0][N] = 0;for(int i = 1; i <= n; i++){for(int j = -N; j <= N; j++){int dis = a[i] - b[i];dp[i][j + N] = min(dp[i - 1][j - dis + N], dp[i - 1][j + dis + N] + 1); }}int minn;for(int i = 0; i <= N; i++){minn = min(dp[n][i + N], dp[n][-i + N]);if(minn != INF){cout << minn << endl;break;}}return 0;
}

这篇关于【万题详解】洛谷P1282 多米诺骨牌的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/697232

相关文章

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

Linux线程同步/互斥过程详解

《Linux线程同步/互斥过程详解》文章讲解多线程并发访问导致竞态条件,需通过互斥锁、原子操作和条件变量实现线程安全与同步,分析死锁条件及避免方法,并介绍RAII封装技术提升资源管理效率... 目录01. 资源共享问题1.1 多线程并发访问1.2 临界区与临界资源1.3 锁的引入02. 多线程案例2.1 为

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (