【万题详解】洛谷P1282 多米诺骨牌

2024-02-10 13:36

本文主要是介绍【万题详解】洛谷P1282 多米诺骨牌,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目

链接——题目在这里!!!

多米诺骨牌由上下 22 个方块组成,每个方块中有 1∼6 个点。现有排成行的上方块中点数之和记为 S1​,下方块中点数之和记为 S2​,它们的差为 ∣∣S1​−S2​。如图S1=6+1+1+1=9,S2=1+5+3+2=11,|S1​−S2​∣=2。每个多米诺骨牌可以旋转 180°,使得上下两个方块互换位置。请你计算最少旋转多少次才能使多米诺骨牌上下 2行点数之差达到最小。

对于图中的例子,只要将最后一个多米诺骨牌旋转 180°,即可使上下 2行点数之差为 0。

输入格式

输入文件的第一行是一个正整数 n(1≤n≤1000),表示多米诺骨牌数。接下来的 n 行表示 n 个多米诺骨牌的点数。每行有两个用空格隔开的正整数,表示多米诺骨牌上下方块中的点数 a 和 b,且 1≤a,b≤6。

输出格式

输出文件仅一行,包含一个整数。表示求得的最小旋转次数。

输入输出样例

输入 #1

4
6 1
1 5
1 3
1 2

输出 #1

1

解题思路

题目要求的是最小差值情况下的最小交换次数,那么我们把其中一个计入状态里。记交换次数好像不太好做(我没试过),所以我们要记的是差值。

但是差值是一个绝对值,好像也不是很好表示,所以我们再来转化一下。观察到每次交换只是把上下两个数交换,故前i个骨牌上下两行数的总和是不变的,所以我们只需记录其中一行数字的和就可以知道差值了。这样状态就好表示了。

f[i][j]表示前i个数字,第一行的数字和是j时,最小的交换次数。初始值所有f[i][j]都是无穷大,f[1][a[1]]=0,f[1][b[1]]=1。(a[]和b[]分别表示第一行和第二行的数字)

转移时,枚举每一个可能的和,共有6*n个,考虑当前一个交不交换即可:

if (j-a[i] >= 0) f[i][j] = min(f[i][j], f[i-1][j-a[i]]);  //当前不交换
if (j-b[i] >= 0) f[i][j] = min(f[i][j], f[i-1][j-b[i]]+1);  //当前交换

求答案时再枚举一下前n个骨牌第一行的和就好。

这样时间、空间复杂度均为O(n*n*6)。

我们发现,每一组骨牌对答案的贡献都是独立的,所以可以单独计算。

设计状态为f[i][j],表示处理到第i个骨牌,所有上面的数减去所有下面的数的值为j的最小旋转次数。因为每一组的差值不超过5,最多有1000组骨牌,所以j的范围是-5000~5000。处理时将j都加上5000,来处理负数下标~~【本来没有考虑到这个竟然也过了...果然玄学】~~

状态转移方程为f[i][j]=min(f[i-1][j-(a[i]-b[i])],f[i-1][j-(b[i]-a[i])]+1);

即如果不旋转,第i组骨牌的结果是a[i]-b[i],所以从f[i-1][j-(a[i]-b[i])]转移过来,答案不加,如果旋转,第i组骨牌的结果是b[i]-a[i],所以从f[i-1][j-(b[i]-a[i])]转移过来,答案+1。

剩下的就是统计答案了,按绝对值从小到大找,找到第一个有解的值就是答案,即差值最小时的答案,如果正负同时成立,就取最小值

AC

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1005,INF=0x3f3f3f3f;
int a[maxn], b[maxn];
int dp[maxn][10 * maxn]; 
int n;
int N = maxn * 5;
int main(){cin >> n;for(int i = 1; i <= n; i++){cin >> a[i] >> b[i];}memset(dp,INF, sizeof(dp));dp[0][N] = 0;for(int i = 1; i <= n; i++){for(int j = -N; j <= N; j++){int dis = a[i] - b[i];dp[i][j + N] = min(dp[i - 1][j - dis + N], dp[i - 1][j + dis + N] + 1); }}int minn;for(int i = 0; i <= N; i++){minn = min(dp[n][i + N], dp[n][-i + N]);if(minn != INF){cout << minn << endl;break;}}return 0;
}

这篇关于【万题详解】洛谷P1282 多米诺骨牌的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/697232

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

SpringBoot日志级别与日志分组详解

《SpringBoot日志级别与日志分组详解》文章介绍了日志级别(ALL至OFF)及其作用,说明SpringBoot默认日志级别为INFO,可通过application.properties调整全局或... 目录日志级别1、级别内容2、调整日志级别调整默认日志级别调整指定类的日志级别项目开发过程中,利用日志

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

详解python pycharm与cmd中制表符不一样

《详解pythonpycharm与cmd中制表符不一样》本文主要介绍了pythonpycharm与cmd中制表符不一样,这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽... 这个问题通常是因为PyCharm和命令行(CMD)使用的制表符(tab)的宽度不同导致的。在PyChar