NMS(非极大值抑制)在物体检测中的应用

2024-02-09 23:38

本文主要是介绍NMS(非极大值抑制)在物体检测中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转自:http://blog.csdn.net/running_j/article/details/51727350

 

非极大值抑制在物体检测方面的应用

结合faster-rcnn给出的py_cpu_nms.py的源码来介绍一下nms算法在物体检测方面的应用。faster-rcnn中经过rpn层之后会得到一些boundingbox和boundingbox对应的属于某一类的分数(置信度)。所以可以根据NMS来去除那些overlap值比较大的box。

import numpy as npdef py_cpu_nms(dets, thresh):"""Pure Python NMS baseline."""#dets:N*M,N是bbox的个数,M的前4位是对应的(x1,y1,x2,y2),第5位是对应的分数#thresh:0.3,0.5....x1 = dets[:, 0]y1 = dets[:, 1]x2 = dets[:, 2]y2 = dets[:, 3]scores = dets[:, 4]areas = (x2 - x1 + 1) * (y2 - y1 + 1)#求每个bbox的面积order = scores.argsort()[::-1]#对分数进行倒排序keep = []#用来保存最后留下来的bboxwhile order.size > 0:i = order[0]#无条件保留每次迭代中置信度最高的bboxkeep.append(i)#计算置信度最高的bbox和其他剩下bbox之间的交叉区域xx1 = np.maximum(x1[i], x1[order[1:]])yy1 = np.maximum(y1[i], y1[order[1:]])xx2 = np.minimum(x2[i], x2[order[1:]])yy2 = np.minimum(y2[i], y2[order[1:]])#计算置信度高的bbox和其他剩下bbox之间交叉区域的面积w = np.maximum(0.0, xx2 - xx1 + 1)h = np.maximum(0.0, yy2 - yy1 + 1)inter = w * h#求交叉区域的面积占两者(置信度高的bbox和其他bbox)面积和的必烈ovr = inter / (areas[i] + areas[order[1:]] - inter)#保留ovr小于thresh的bbox,进入下一次迭代。inds = np.where(ovr <= thresh)[0]#因为ovr中的索引不包括order[0]所以要向后移动一位order = order[inds + 1]return keep

下面解释下利用NMS进行过滤区域的原理。当一个窗口区域被认为是最有可能表示某一个物体的时候,那么和这个窗口区域交叉面积大的proposal就可以认为不是需要的窗口区域。

以上为个人对NMS在物体检测方面的一些理解,如果有什么不对的地方,希望指出。另为给出一个个人觉得对NMS解释比较好的连接。http://www.cnblogs.com/liekkas0626/p/5219244.html

 

这篇关于NMS(非极大值抑制)在物体检测中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/695598

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布