A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings论文笔记

本文主要是介绍A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings论文笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回看前几篇笔记发现我剪贴的公式显示很乱,虽然编辑时调整过了,但是不知道为什么显示的和编辑时的不一样,为方便大家的阅读,我开始尝试着采用markdown的形式写笔记,前几篇有时间的话再修改。

这篇论文阅读完,我依然有很多不懂的地方,对其操作不是很清晰,因为我没做过这方面的内容,且近期估计没时间学习其项目,所以记录理解的可能有误,希望大家带着思考阅读。
PS:感觉这篇文章的作者是这个方向的大神呢,引用里好多都是他自己的文章
原文下载链接
项目下载链接

摘要

  • 跨语种嵌入映射(cross-lingual embedding mappings)的核心思想:分别训练单个语种语料,再通过线性变换映射到shared space。
  • 方法整体分为监督的、半监督的和非监督的,监督和半监督都要依赖种子字典(seed dictionary),本文主要研究非监督的方法
  • 非监督方法主要有两种:对抗训练(adversarial training)和自学习(self-learning)
  • 对抗训练的缺点:依赖favorable conditions(如限制在相关的语种,类似维基百科的语料)
  • 自学习的缺点:初始化不好时,易陷入差的(poor)局部最优
  • 本文即使根据自学习的缺点提出了初始化的方法。
  • 提出方法的依据是:观察到不同语种中相同的词有相似的相似度分布,如图1所示:在这里插入图片描述
    Figure 1中的第一幅图是英文单词two的相似度分布,第二幅图是意大利语due(等同于two)的相似度分布,第三幅图是意大利语cane(等同于dog)的相似度分布。

本文算法

设X和Z是两种语言的embedding矩阵,所以他们的第 i t h ith ith X i ∗ X_{i*} Xi Z i ∗ Z_{i*} Zi表示他们语种中的第 i i i个词,我们的目标就是学习变换矩阵 W X {W_{X}} WX W Z {W_{Z}} WZ,所以映射embedding X W X {XW_{X}} XWX Z W Z {ZW_{Z}} ZWZ在相同的跨语种空间,同时,要在两个语种中构建一个字典即稀疏矩阵 D D D,如果目标语言中的第j个单词是源语言中第i个单词的翻译,则Dij = 1。
本文算法主要分四步:1)normalize embedding的预处理;2)完全非监督的初始化方案;3)鲁棒性强的self-learning步骤;4)最后微调通过对称re-weighting进一步improve mapping.

1 embedding normalization

这边具体不知道怎么做的,只能把翻译写下来了(也不知道翻的对不对):长度标准化嵌入,然后平均每个维度的中心,然后长度再次标准化它们。(原文:length normalizes the embeddings, then mean centers each dimension, and then length normalizes them again.)

2 完全非监督初始化

这里我就拷贝公式了,剩下的部分因为我也似懂非懂所以就简单写一下:mapping中的一个难点是X和Z并不对应,此处包含两方面,词不对应(反应到行),维度不对应(反应到列)。
本文的方法是首先通过 M X = X X T M_{X}=XX^{T} MX=XXT M Z = Z Z T M_{Z}=ZZ^{T} MZ=ZZT分别求其相似度矩阵,然后对每一行进行排序,然后在进行第一节的规范化操作;

3 Robust self-learning

这部分没看懂啊,大家还是认真看原文吧

4 Symmetric re-weighting

同上一节(羞愧)

这篇文章没仔细看,很多细节没看懂,所以记得也比较草率,之所以还这样记录下来是为了记录下其核心思想,等回顾时也许能用上。这篇写的很差,大家见谅啊~~~~

这篇关于A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings论文笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/695591

相关文章

C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式

《C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式》Markdown凭借简洁的语法、优良的可读性,以及对版本控制系统的高度兼容性,逐渐成为最受欢迎的文档格式... 目录为什么要将文档转换为 Markdown 格式使用工具将 Word 文档转换为 Markdown(.

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

Python实现一键PDF转Word(附完整代码及详细步骤)

《Python实现一键PDF转Word(附完整代码及详细步骤)》pdf2docx是一个基于Python的第三方库,专门用于将PDF文件转换为可编辑的Word文档,下面我们就来看看如何通过pdf2doc... 目录引言:为什么需要PDF转Word一、pdf2docx介绍1. pdf2docx 是什么2. by

如何Python使用设置word的页边距

《如何Python使用设置word的页边距》在编写或处理Word文档的过程中,页边距是一个不可忽视的排版要素,本文将介绍如何使用Python设置Word文档中各个节的页边距,需要的可以参考下... 目录操作步骤代码示例页边距单位说明应用场景与高级用China编程途小结在编写或处理Word文档的过程中,页边距是一个

Python使用python-docx实现自动化处理Word文档

《Python使用python-docx实现自动化处理Word文档》这篇文章主要为大家展示了Python如何通过代码实现段落样式复制,HTML表格转Word表格以及动态生成可定制化模板的功能,感兴趣的... 目录一、引言二、核心功能模块解析1. 段落样式与图片复制2. html表格转Word表格3. 模板生

Java如何根据word模板导出数据

《Java如何根据word模板导出数据》这篇文章主要为大家详细介绍了Java如何实现根据word模板导出数据,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... pom.XML文件导入依赖 <dependency> <groupId>cn.afterturn</groupId>

Python实现word文档内容智能提取以及合成

《Python实现word文档内容智能提取以及合成》这篇文章主要为大家详细介绍了如何使用Python实现从10个左右的docx文档中抽取内容,再调整语言风格后生成新的文档,感兴趣的小伙伴可以了解一下... 目录核心思路技术路径实现步骤阶段一:准备工作阶段二:内容提取 (python 脚本)阶段三:语言风格调

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Java利用docx4j+Freemarker生成word文档

《Java利用docx4j+Freemarker生成word文档》这篇文章主要为大家详细介绍了Java如何利用docx4j+Freemarker生成word文档,文中的示例代码讲解详细,感兴趣的小伙伴... 目录技术方案maven依赖创建模板文件实现代码技术方案Java 1.8 + docx4j + Fr

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方