[20191207][Android10]高德地图导航功耗场景优化

2024-02-09 19:38

本文主要是介绍[20191207][Android10]高德地图导航功耗场景优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要

在这里插入图片描述

1. 测试现象

1.1 EPRODUCING PROCEDURES:

1.进入高德 Map(data) wifi),起点为自己所在位置,搜索一个位置进行导航;
2.等待30秒后开始记录电流,持续5分钟;
3.按Power键,灭屏待机;
4.手机灭屏15秒后开始记录电流,持续3分钟;

1.2 Test numberSummary
设备高德地图导航
测试机461.82 mA
对比机369.13 mA

2.分析

2.1 拔屏以扣除LCD影响
设备高德地图导航
测试机+450nit带屏幕导航405.18 mA
对比机+450nit带屏幕导航380.11
测试机+拔屏174.45 mA
对比机+拔屏131.76 mA

从上述看扣掉 LCD 同样有功耗差异,即LCD 关系不大

注意:导航场景:一般是带导航语音,即需要考虑Audio的影响

2.2 设计实验找出问题差异

以下是我自己设计的实验方法

1).对比机与测试机的GPS搜星实验
  1. GPS puls 搜星查看,我apk放到附件中
  2. 只开启GPS+飞行模式
  3. 尽量2台机器相同环境下同时测试
    4.放置5分钟后,apk主界面截图
GPS plus+工具搜星情况
对比机无GPS信号增强器观察卫星数量和信号强度
对比机有GPS信号增强器观察卫星数量和信号强度
测试机无GPS信号增强器观察卫星数量和信号强度
测试机有GPS信号增强器观察卫星数量和信号强度

实验发现:基本无差异,故 GPS 单体应该是没问题

2).导航电流测试
  1. 最暗亮度测试,避免扣掉屏幕带来的影响
  2. 静音+插入耳机,去除导航语音带来的影响
  3. 尽量2台机器相同环境下同时测试
测试项目测试机器(mA)对比机(mA)
case 1 静态HOME界面固定墙纸_飞行模式65.2168.19
case 2网络定位条件,高德导航测试:只保持WiFi连接,飞行模式87.6388.95
case 3 GPS定位条件,高德导航测试:开启GPS+插卡+WiFi 连接147.63120.71
case 4 GPS定位条件,高德导航测试:GPS增强器+开启GPS+插卡+WiFi 连接169.64153.48
  • case 1 目的: 对比相同亮度下是否存在差异
  • case 2 目的: 查看是否网络定位有问题
  • case 3 目的:查看是否GPS定位存问题
  • case 3 目的: 查杀是否与GPS信号强度有关,因为室内是GPS信号比较弱

上述:

  • case 1 说明测试机和对比机亮屏下相同亮度的测试电流是基本一致,即基础的系统功耗是相同的
  • case 2 说明网络定位是OK的,说明相同APK在不同机器测试,运行是后台也基本保持一致,且说明如果GPS不开启则是导航是好的;
  • case 3、case 4 说明GPS开启,会带来导航功耗影响
3).GPS单体功耗

这块数据没有,故需要让硬件提供:

测试步骤:

Wi-Fi Off, GPS ON, BT OFF, NFC OFF, Fly mode ON.
灭屏,等待1min,记录平均电流,即是打开GPS时的电流。
在上述的条件时,记录下可以稳定复现的最小电流值,即是 GPS floor current.
Average current when GPS navigation working:Step1:通过下拉菜单,打开飞行模式,打开位置服务;
Step2:进入工程模式 adb shell am start -n com.mediatek.ygps/com.mediatek.ygps.YgpsActivity;
Step3:进入Location->YGPS->Enable in BG.(need restart),重启后再次进入该界面;
Step4:关闭屏幕,待电流稳定,测试3分钟,记录电流A1;
Step5:通过下拉菜单,关闭位置服务;
Step6:进入工程模式,进入Location->YGPS,再回到YGPS界面;
Step7:关闭屏幕,待电流稳定,测试3分钟,记录电流A2;
GPS ON=A1-A2

由于不知道 ygps 源码,通过测试步骤基本猜到,主要是测试GPS开启电流和工作电流,相当于高德地图的定位场景,非导航场景

测试数据:

设备平均电流
测试机34mA
对比机34mA

从上面数据看,GPS的工作电流是基本一致的,即GPS单体是OK的

这就奇怪了,GPS单体是好的,为什么导航一开GPS就存问题呢?还需要再排除干扰。例如以下干扰:

  1. WiFi 环境因素
  2. 4G 插卡因素
  3. 应用启动后会进行页面、地图数据、配置文件下载
  4. 测试过程中,如果网络发生变化,热点不稳定
4).离线导航
  1. Wi-Fi Off, GPS ON, BT OFF, NFC OFF, Fly mode ON,排除WiFi带来的干扰
  2. 最小亮度
  3. 使用 what_temp apk抓CPU数据
  4. 静音插耳机
  5. 使用高德离线地图导航
设备测试机对比机
高德地图定位界面55.13mA50.13mA
高德地图导航界面83.00mA60.49mA

上述查看:

  1. 现象复现,即排除了Wi-Fi Off, GPS ON, BT OFF, NFC OFF, Fly mode影响,即wifi、4G都没问题
  2. 定位场景差异不大,导航场景差异比较大。
  3. 需要查看高德地图定位细节
2.3 高德地图的dump信息

dumpsys location|grep -B 2 “com.autonavi.minimap”

Tokyo_Lite:/ $ dumpsys location|grep -B 2 "com.autonavi.minimap"Battery Saver Location Mode: NO_CHANGELocation Listeners:Reciever[35eed63 listener UpdateRecord[passive com.autonavi.minimap(10167 foreground) Request[POWER_NONE passive fastest=0] null], isNeedBgGpsRestrict false monitoring location: true]Reciever[fe54b41 listener UpdateRecord[passive android(1000 foreground) Request[POWER_NONE passive fastest=+30m0s0ms] null], isNeedBgGpsRestrict false monitoring location: true]Reciever[a523146 listener UpdateRecord[passive com.autonavi.minimap(10167 foreground) Request[POWER_NONE passive fastest=+1s0ms] null], isNeedBgGpsRestrict false monitoring location: true]Reciever[4698940 listener UpdateRecord[passive android(1000 foreground) Request[POWER_NONE passive fastest=0] null], isNeedBgGpsRestrict false monitoring location: false]Reciever[3e939ea listener monitoring location: false]Reciever[a629ca9 listener UpdateRecord[gps com.autonavi.minimap(10167 foreground) Request[ACCURACY_FINE gps requested=+1s0ms fastest=+1s0ms] null], isNeedBgGpsRestrict false monitoring location: true]Active Records by Provider:gps:UpdateRecord[gps com.autonavi.minimap(10167 foreground) Request[ACCURACY_FINE gps requested=+1s0ms fastest=+1s0ms] null], isNeedBgGpsRestrict false
--UpdateRecord[passive android(1000 foreground) Request[POWER_NONE passive fastest=0] null], isNeedBgGpsRestrict falseUpdateRecord[passive android(1000 foreground) Request[POWER_NONE passive fastest=+30m0s0ms] null], isNeedBgGpsRestrict falseUpdateRecord[passive com.autonavi.minimap(10167 foreground) Request[POWER_NONE passive fastest=0] null], isNeedBgGpsRestrict falseUpdateRecord[passive com.autonavi.minimap(10167 foreground) Request[POWER_NONE passive fastest=+1s0ms] null], isNeedBgGpsRestrict false
--Active GnssNavigationMessage Listeners:Active GnssStatus Listeners:5600 10167 com.autonavi.minimap: false5600 10167 com.autonavi.minimap: false5600 10167 com.autonavi.minimap: false5766 10167 com.autonavi.minimap: falseHistorical Records by Provider:android: passive: Min interval 0 seconds: Max interval 1800 seconds: Duration requested 99 total, 99 foreground, out of the last 99 minutes: Currently activecom.autonavi.minimap: passive: Min interval 0 seconds: Max interval 1 seconds: Duration requested 2 total, 2 foreground, out of the last 98 minutes: Currently activecom.autonavi.minimap: gps: Interval 1 seconds: Duration requested 2 total, 2 foreground, out of the last 98 minutes: Currently active

查看高德地图的dump信息,我们基本知道高德地图申请了哪些定位:

  1. GPS 定位,定位间隔1秒一个
    Reciever[a629ca9 listener UpdateRecord[gps com.autonavi.minimap(10167 foreground) Request[ACCURACY_FINE gps requested=+1s0ms fastest=+1s0ms] null], isNeedBgGpsRestrict false monitoring location: true]
  2. passive 定位
    Reciever[a523146 listener UpdateRecord[passive com.autonavi.minimap(10167 foreground) Request[POWER_NONE passive fastest=+1s0ms] null], isNeedBgGpsRestrict false monitoring location: true]
  3. 监听了 GnssStatus 数据
    Active GnssStatus Listeners:
    5600 10167 com.autonavi.minimap: false
    5600 10167 com.autonavi.minimap: false
    5600 10167 com.autonavi.minimap: false
    5766 10167 com.autonavi.minimap: false
2.4 分析高德地图定位和导航调用的函数

我们在dump locaiton已经知道高德地图会申请使用GPS,并且定位间隔为1秒,故不需要在

1) LocationManager 埋点
public class LocationManager {public boolean addNmeaListener(@NonNull OnNmeaMessageListener listener, @Nullable Handler handler) {boolean result;// huazhi.suif("true".equals(SystemProperties.get("persist.sys.tct.addNmeaListener.debug", "false"))) {Log.e(TAG, "skip addNmeaListener");return false;}// huazhi.su@RequiresPermission(ACCESS_FINE_LOCATION)public boolean registerGnssStatusCallback(@NonNull GnssStatus.Callback callback, @Nullable Handler handler) {boolean result;synchronized (mGnssStatusListeners) {// huazhi.suif("true".equals(SystemProperties.get("persist.sys.tct.registerGnssStatusCallback.debug", "false"))) {if("com.autonavi.minimap".equals(mContext.getPackageName())) {Log.e(TAG, "skip registerGnssStatusCallback  packageName:" + mContext.getPackageName());}return false;}// huazhi.su
2) 查看导航场景高德地图使用的sdk情况
场景API接口
定位场景requestLocationUpdates、registerGnssStatusCallback
导航场景requestLocationUpdates、registerGnssStatusCallback、addNmeaListener

即导航场景比定位场景多了 addNmeaListener

12-06 14:10:44.728  3716  3716 W System.err:    at android.location.LocationManager.addNmeaListener(LocationManager.java:2046)
12-06 14:10:44.736  3716  4034 W System.err:    at android.location.LocationManager.registerGnssStatusCallback(LocationManager.java:1944)locationManager.registerGnssStatusCallback(new GnssStatus.Callback() {@Overridepublic void onSatelliteStatusChanged(GnssStatus status) {super.onSatelliteStatusChanged(status);Log.d(TAG, "onSatelliteStatusChanged");}});locationManager.addNmeaListener(new OnNmeaMessageListener() {@Overridepublic void onNmeaMessage(String message, long timestamp) {Log.d(TAG, "onNmeaMessage message :" + message + ", timestamp :" + timestamp);sendRequestWithHttpClient();}});locationManager.requestLocationUpdates(GPS_PROVIDER, 1000, 0, mMyLocationListener);
  1. 之前的测试GPS单体的功耗基本是 requestLocationUpdates 这个接口的功能,故 基本问题不大
  2. 且导航和定位场景中,导航场景存在和定位场景不同,故我们可以单独屏蔽掉 registerGnssStatusCallback、addNmeaListener

3. 问题根源研究

3.1 禁止监听 GnssStatus 和 Nmea
测试项平均电流备注
离线导航133异常电流波形
离线导航+禁止监听 GnssStatus120异常电流波形
离线导航+禁止监听 Nmea110异常电流波形
离线导航+禁止监听 Nmea + GnssStatus100正常电流波形

首先我们看下异常电流:特征是一秒钟一个波峰,且单个异常波形平均电流就有166mA,基本功耗不被拉大才怪
异常电流

上述说明:监听 Nmea + GnssStatus 会带来功耗,但是肯定要给第三方应用正常使用这个数据

3.1 拦截 GnssStatus 和 Nmea

拦截位置

package com.android.server.location;public class GnssLocationProvider ...{@NativeEntryPoint // libgnss.so上报private void reportNmea(long timestamp) {// 新增拦截...// 对应上层的:public void onNmeaMessage(String message, long timestamp) 方法...}@NativeEntryPoint // libgnss.so上报private void reportSvStatus(int svCount, int[] svidWithFlags, float[] cn0s,// 新增拦截...// 对应上层的:public void onSatelliteStatusChanged(GnssStatus status) { 方法...}}
测试项平均电流备注
离线导航133异常电流波形
离线导航+拦截 GnssStatus 数据上报123异常电流波形
离线导航+拦截 Nmea 数据上报110异常电流波形
离线导航+拦截 Nmea + GnssStatus 数据上报100正常电流波形

拦截测试也说明 Nmea + GnssStatus 有影响,难道高德地图会收到数据做一些耗电操作,还是对比机有优化呢?
由于高德地图、对比机没有源码,所以我们无法知道,从源码一个函数一个函数地分析。看是否源代码有问题,即了解GPS的Nmea + GnssStatus上报给上层的源码

4. 源码分析并新增日志

4.1 源码数据通路新增日志

例如 Nmea 数据如何上报给上层apk,在这个数据传递的通路新增日志,每个函数调用的地方都加

1.数据源头-------------------------------------------------
package com.android.server.location;@NativeEntryPointprivate void reportNmea(long timestamp) {if (!mItarSpeedLimitExceeded) {int length = native_read_nmea(mNmeaBuffer, mNmeaBuffer.length);String nmea = new String(mNmeaBuffer, 0 /* offset */, length);mGnssStatusListenerHelper.onNmeaReceived(timestamp, nmea);}}2.-------------------------------------------------
public abstract class GnssStatusListenerHelper extends RemoteListenerHelper<IGnssStatusListener> {public void onNmeaReceived(final long timestamp, final String nmea) {// 遍历 addNmeaListener 监听数量,例如高德地图使用了2个,一个定位注册的,一个导航场景注册的foreach((IGnssStatusListener listener, CallerIdentity callerIdentity) -> {// 检查是否与定位权限if (hasPermission(mContext, callerIdentity)) {logPermissionDisabledEventNotReported(TAG, callerIdentity.mPackageName, "NMEA");return;}// 消息传递到上层listener.onNmeaReceived(timestamp, nmea);});}
}
3.-------------------------------------------------
public class LocationManager {@Overridepublic void onNmeaReceived(long timestamp, String nmea) {...mGnssHandler.obtainMessage(NMEA_RECEIVED).sendToTarget();...}for (Nmea nmea : mNmeaBuffer) {// 数据给上层mGnssNmeaListener.onNmeaMessage(nmea.mNmea, nmea.mTimestamp);}
4.2 现象发现
1)日志大量打印,这里1秒钟70组数据从底层上报出来,都需要经过上述的函数,简直是太频繁
01-01 00:04:54.516  3740  4447 E LocationManager: skip onNmeaReceived: nmea$GNGGA,160454.011,8960.0000,N,00000.0000,E,0,0,,137.0,M,13.0,M,,*5F
01-01 00:04:54.516  3328  4561 E LocationManager: skip onNmeaReceived: nmea$GNGGA,160454.011,8960.0000,N,00000.0000,E,0,0,,137.0,M,13.0,M,,*5F
01-01 00:04:54.518  3328  4561 E LocationManager: skip onNmeaReceived: nmea$GNGGA,160454.011,8960.0000,N,00000.0000,E,0,0,,137.0,M,13.0,M,,*5F
01-01 00:04:54.519  3740  4447 E LocationManager: skip onNmeaReceived: nmea$GPGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*30
01-01 00:04:54.520  3328  4561 E LocationManager: skip onNmeaReceived: nmea$GPGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*30
01-01 00:04:54.522  3328  4051 E LocationManager: skip onNmeaReceived: nmea$GPGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*30
01-01 00:04:54.522  3328  4561 E LocationManager: skip onNmeaReceived: nmea$GPGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*30
01-01 00:04:54.522  3740  4447 E LocationManager: skip onNmeaReceived: nmea$GLGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*2C
01-01 00:04:54.524  3328  4561 E LocationManager: skip onNmeaReceived: nmea$GLGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*2C
01-01 00:04:54.524  3328  4051 E LocationManager: skip onNmeaReceived: nmea$GLGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*2C
01-01 00:04:54.526  3328  4051 E LocationManager: skip onNmeaReceived: nmea$GLGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*2C
01-01 00:04:54.526  3740  4447 E LocationManager: skip onNmeaReceived: nmea$BDGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*21
01-01 00:04:54.527  3328  4051 E LocationManager: skip onNmeaReceived: nmea$BDGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*21
01-01 00:04:54.527  3328  4051 E LocationManager: skip onNmeaReceived: nmea$BDGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*21
01-01 00:04:54.527  3328  4561 E LocationManager: skip onNmeaReceived: nmea$BDGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*21
01-01 00:04:54.528  3740  4447 E LocationManager: skip onNmeaReceived: nmea$GAGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*21
01-01 00:04:54.529  3328  4561 E LocationManager: skip onNmeaReceived: nmea$GAGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*21
01-01 00:04:54.529  3328  4051 E LocationManager: skip onNmeaReceived: nmea$GAGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*21
01-01 00:04:54.529  3328  4051 E LocationManager: skip onNmeaReceived: nmea$GAGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*21
01-01 00:04:54.531  3740  4447 E LocationManager: skip onNmeaReceived: nmea$GPGSV,1,1,0*49
01-01 00:04:54.531  3328  4051 E LocationManager: skip onNmeaReceived: nmea$GPGSV,1,1,0*49
01-01 00:04:54.531  3328  4561 E LocationManager: skip onNmeaReceived: nmea$GPGSV,1,1,0*49
01-01 00:04:54.533  3740  4447 E LocationManager: skip onNmeaReceived: nmea$GLGSV,1,1,0*55
01-01 00:04:54.533  3328  4561 E LocationManager: skip onNmeaReceived: nmea$GLGSV,1,1,0*55
01-01 00:04:54.534  3328  4051 E LocationManager: skip onNmeaReceived: nmea$GPGSV,1,1,0*49
01-01 00:04:54.534  3328  4051 E LocationManager: skip onNmeaReceived: nmea$GLGSV,1,1,0*55
01-01 00:04:54.535  3328  4051 E LocationManager: skip onNmeaReceived: nmea$GLGSV,1,1,0*55
01-01 00:04:54.535  3740  4447 E LocationManager: skip onNmeaReceived: nmea$BDGSV,1,1,0*58
01-01 00:04:54.536  3328  4051 E LocationManager: skip onNmeaReceived: nmea$BDGSV,1,1,0*58
01-01 00:04:54.536  3328  4561 E LocationManager: skip onNmeaReceived: nmea$BDGSV,1,1,0*58
01-01 00:04:54.536  3328  4561 E LocationManager: skip onNmeaReceived: nmea$BDGSV,1,1,0*58
01-01 00:04:54.537  3740  4447 E LocationManager: skip onNmeaReceived: nmea$GAGSV,1,1,0*58
01-01 00:04:54.537  3328  4561 E LocationManager: skip onNmeaReceived: nmea$GAGSV,1,1,0*58
01-01 00:04:54.538  3328  4051 E LocationManager: skip onNmeaReceived: nmea$GAGSV,1,1,0*58
01-01 00:04:54.538  3328  4051 E LocationManager: skip onNmeaReceived: nmea$GAGSV,1,1,0*58
01-01 00:04:54.539  3740  4447 E LocationManager: skip onNmeaReceived: nmea$GNRMC,160454.011,V,8960.0000,N,00000.0000,E,0.000,0.00,311218,,,N*55
01-01 00:04:54.539  3328  4051 E LocationManager: skip onNmeaReceived: nmea$GNRMC,160454.011,V,8960.0000,N,00000.0000,E,0.000,0.00,311218,,,N*55
01-01 00:04:54.539  3328  4051 E LocationManager: skip onNmeaReceived: nmea$GNRMC,160454.011,V,8960.0000,N,00000.0000,E,0.000,0.00,311218,,,N*55
01-01 00:04:54.540  3740  4447 E LocationManager: skip onNmeaReceived: nmea$GNVTG,0.00,T,,M,0.000,N,0.000,K,N*2C
01-01 00:04:54.541  3328  4561 E LocationManager: skip onNmeaReceived: nmea$GNVTG,0.00,T,,M,0.000,N,0.000,K,N*2C
01-01 00:04:54.542  3328  3345 E LocationManager: skip onNmeaReceived: nmea$GNVTG,0.00,T,,M,0.000,N,0.000,K,N*2C
01-01 00:04:54.542  3328  4051 E LocationManager: skip onNmeaReceived: nmea$GNRMC,160454.011,V,8960.0000,N,00000.0000,E,0.000,0.00,311218,,,N*55
01-01 00:04:54.542  3328  4051 E LocationManager: skip onNmeaReceived: nmea$GNVTG,0.00,T,,M,0.000,N,0.000,K,N*2C
01-01 00:04:54.542  3740  4447 E LocationManager: skip onNmeaReceived: nmea$PMTKTSX1,5012,326233.306,43.336,38.845,59000000,32.622746,32.623331,0.000000,-0.225000,0.000000,32.623*7C
01-01 00:04:54.543  3328  4051 E LocationManager: skip onNmeaReceived: nmea$PMTKTSX1,5012,326233.306,43.336,38.845,59000000,32.622746,32.623331,0.000000,-0.225000,0.000000,32.623*7C
01-01 00:04:54.544  3328  4051 E LocationManager: skip onNmeaReceived: nmea$PMTKTSX1,5012,326233.306,43.336,38.845,59000000,32.622746,32.623331,0.000000,-0.225000,0.000000,32.623*7C
01-01 00:04:54.544  3328  3345 E LocationManager: skip onNmeaReceived: nmea$PMTKTSX1,5012,326233.306,43.336,38.845,59000000,32.622746,32.623331,0.000000,-0.225000,0.000000,32.623*7C
01-01 00:04:54.544  3740  4447 E LocationManager: skip onNmeaReceived: nmea$PMTKGEPH,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*04
01-01 00:04:54.545  3328  3345 E LocationManager: skip onNmeaReceived: nmea$PMTKGEPH,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*04
01-01 00:04:54.545  3328  4051 E LocationManager: skip onNmeaReceived: nmea$PMTKGEPH,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*04
01-01 00:04:54.546  3328  4051 E LocationManager: skip onNmeaReceived: nmea$PMTKGEPH,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*04
01-01 00:04:54.546  3740  4447 E LocationManager: skip onNmeaReceived: nmea$PMTKGALM,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*19
01-01 00:04:54.547  3328  4051 E LocationManager: skip onNmeaReceived: nmea$PMTKGALM,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*19
01-01 00:04:54.547  3328  3345 E LocationManager: skip onNmeaReceived: nmea$PMTKGALM,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*19
01-01 00:04:54.548  3328  4051 E LocationManager: skip onNmeaReceived: nmea$PMTKGALM,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*19
01-01 00:04:54.548  3740  4447 E LocationManager: skip onNmeaReceived: nmea$GNACCURACY,3162.1,180.0,3.5,500.0*29
01-01 00:04:54.548  3328  4051 E LocationManager: skip onNmeaReceived: nmea$GNACCURACY,3162.1,180.0,3.5,500.0*29
01-01 00:04:54.549  3328  3345 E LocationManager: skip onNmeaReceived: nmea$GNACCURACY,3162.1,180.0,3.5,500.0*29
01-01 00:04:54.549  3328  3345 E LocationManager: skip onNmeaReceived: nmea$GNACCURACY,3162.1,180.0,3.5,500.0*29
01-01 00:04:54.550  3740  4447 E LocationManager: skip onNmeaReceived: nmea$PMTKAGC,160454.011,6174,6241,7189,7273,0,0,0*68
01-01 00:04:54.550  3328  3345 E LocationManager: skip onNmeaReceived: nmea$PMTKAGC,160454.011,6174,6241,7189,7273,0,0,0*68
01-01 00:04:54.551  3328  3345 E LocationManager: skip onNmeaReceived: nmea$PMTKAGC,160454.011,6174,6241,7189,7273,0,0,0*68
01-01 00:04:54.551  3328  4051 E LocationManager: skip onNmeaReceived: nmea$PMTKAGC,160454.011,6174,6241,7189,7273,0,0,0*68
01-01 00:04:54.553  3740  4447 E LocationManager: skip onNmeaReceived: nmea$PMTKAG2,160454.011,6*1C
01-01 00:04:54.553  3328  4051 E LocationManager: skip onNmeaReceived: nmea$PMTKAG2,160454.011,6*1C
01-01 00:04:54.553  3328  3345 E LocationManager: skip onNmeaReceived: nmea$PMTKAG2,160454.011,6*1C
01-01 00:04:54.554  3328  3345 E LocationManager: skip onNmeaReceived: nmea$PMTKAG2,160454.011,6*1C
2)异常发现

发现只要去掉 hasPermission 的调用,功耗就能掉下来,没想到是这个函数搞得鬼

    public void onNmeaReceived(final long timestamp, final String nmea) {foreach((IGnssStatusListener listener, CallerIdentity callerIdentity) -> {// huazhi.su add startif("true".equals(SystemProperties.get("persist.sys.Helper.hasPermission", "false"))) {// 实测1秒中被调用了70次,去除后平均电流减少20mA// 这个判断作用:若用户定位的时候突然关闭GPS权限,则也要相应停止数据上报到上层// 出发点是好:但是1秒钟判断了70次就不厚道了,且不同应用注册的数量不同,故这里的次数也不一样if (!hasPermission(mContext, callerIdentity)) {logPermissionDisabledEventNotReported(TAG, callerIdentity.mPackageName, "NMEA");return;}}// huazhi.su add endlistener.onNmeaReceived(timestamp, nmea);});protected boolean hasPermission(Context context, CallerIdentity callerIdentity) {if (LocationPermissionUtil.doesCallerReportToAppOps(context, callerIdentity)) {// The caller is identified as a location provider that will report location// access to AppOps. Skip noteOp but do checkOp to check for location permission.return mAppOps.checkOpNoThrow(AppOpsManager.OP_FINE_LOCATION, callerIdentity.mUid,callerIdentity.mPackageName) == AppOpsManager.MODE_ALLOWED;}return mAppOps.noteOpNoThrow(AppOpsManager.OP_FINE_LOCATION, callerIdentity.mUid,callerIdentity.mPackageName) == AppOpsManager.MODE_ALLOWED;}

上述中 reportSvStatus 也使用到了 hasPermission 的判断,但是实测回调的次数没有 reportNmea多,故功耗电流小一些

    public void onSvStatusChanged (...hasPermission(mContext, callerIdentity)...}

5. 问题发现与解决

5.1. 功耗问题原因

去掉了 hasPermission 就好,说明系统也经不起频繁执行某个函数的方法

5.2. 分析

源码也存在问题,为什么这么频繁调用的地方,每次都是执行一个函数,干嘛不把这个变量的状态保持下来。读状态比去执行函数的效率高多了。
估计 Google 写这个函数的时候,没考虑的这里实际会被频繁调用到

5.3. 解决方案
  1. 监听权限变化事件,当权限改变的时候,更新下对应uid的权限,并保存起来
    context.getPackageManager().addOnPermissionsChangeListener(mOnPermissionsChangedListener);private OnPermissionsChangedListener mOnPermissionsChangedListener = new OnPermissionsChangedListener() {public void onPermissionsChanged(int uid) {updatePermissionsChanged(uid);}};
  1. 若当前保存了uid的权限状态,则读状态,而不是每次执行函数获取,提高效率
    private boolean isHasPermission(Context context, CallerIdentity callerIdentity) {if(mPermissionsList.containsKey(callerIdentity.mUid)) {return mPermissionsList.get(callerIdentity.mUid);} else {boolean isHasPermission = hasPermission(mContext, callerIdentity);mPermissionsList.put(callerIdentity.mUid, isHasPermission);return isHasPermission;}}

5.4 高德地图导航场景电流优化了 30mA

优化后电流由 133mA 下降到100mA, 1秒钟一个的异常波形也消失了。
由于这里数据是我自己测的

在这里插入图片描述

这篇关于[20191207][Android10]高德地图导航功耗场景优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/695110

相关文章

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

Linux高并发场景下的网络参数调优实战指南

《Linux高并发场景下的网络参数调优实战指南》在高并发网络服务场景中,Linux内核的默认网络参数往往无法满足需求,导致性能瓶颈、连接超时甚至服务崩溃,本文基于真实案例分析,从参数解读、问题诊断到优... 目录一、问题背景:当并发连接遇上性能瓶颈1.1 案例环境1.2 初始参数分析二、深度诊断:连接状态与

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

Redis中RedisSearch使用及应用场景

《Redis中RedisSearch使用及应用场景》RedisSearch是一个强大的全文搜索和索引模块,可以为Redis添加高效的搜索功能,下面就来介绍一下RedisSearch使用及应用场景,感兴... 目录1. RedisSearch的基本概念2. RedisSearch的核心功能(1) 创建索引(2

Kotlin运算符重载函数及作用场景

《Kotlin运算符重载函数及作用场景》在Kotlin里,运算符重载函数允许为自定义类型重新定义现有的运算符(如+-…)行为,从而让自定义类型能像内置类型那样使用运算符,本文给大家介绍Kotlin运算... 目录基本语法作用场景类对象数据类型接口注意事项在 Kotlin 里,运算符重载函数允许为自定义类型重

Python datetime 模块概述及应用场景

《Pythondatetime模块概述及应用场景》Python的datetime模块是标准库中用于处理日期和时间的核心模块,本文给大家介绍Pythondatetime模块概述及应用场景,感兴趣的朋... 目录一、python datetime 模块概述二、datetime 模块核心类解析三、日期时间格式化与

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地