Seurat - 聚类教程 (1)

2024-02-09 12:44
文章标签 教程 聚类 seurat

本文主要是介绍Seurat - 聚类教程 (1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

设置 Seurat 对象

本教程[1]中,我们将分析 10X Genomics 免费提供的外周血单核细胞 (PBMC) 数据集。在 Illumina NextSeq 500 上对 2,700 个单细胞进行了测序。可以在此处[2]找到原始数据。

我们首先读取数据。 Read10X() 函数从 10X 读取 cellranger 管道的输出,返回唯一的分子识别 (UMI) 计数矩阵。该矩阵中的值表示在每个细胞(列)中检测到的每个特征(即基因;行)的分子数量。请注意,较新版本的 cellranger 现在也使用 h5 文件格式进行输出,可以使用 Seurat 中的 Read10X_h5() 函数读取该格式。

接下来我们使用计数矩阵来创建 Seurat 对象。该对象充当容器,其中包含单细胞数据集的数据(如计数矩阵)和分析(如 PCA 或聚类结果)。例如,在 Seurat v5 中,计数矩阵存储在 pbmc[["RNA"]]$counts 中。

library(dplyr)
library(Seurat)
library(patchwork)

# Load the PBMC dataset
pbmc.data <- Read10X(data.dir = "/brahms/mollag/practice/filtered_gene_bc_matrices/hg19/")

# Initialize the Seurat object with the raw (non-normalized data).
pbmc <- CreateSeuratObject(counts = pbmc.data, project = "pbmc3k", min.cells = 3, min.features = 200)

pbmc
  • 输出
## An object of class Seurat 
## 13714 features across 2700 samples within 1 assay 
## Active assay: RNA (13714 features, 0 variable features)
##  1 layer present: counts
  • 示例
# Lets examine a few genes in the first thirty cells
pbmc.data[c("CD3D""TCL1A""MS4A1"), 1:30]

# 输出
## 3 x 30 sparse Matrix of class "dgCMatrix"
##                                                                    
## CD3D  4 . 10 . . 1 2 3 1 . . 2 7 1 . . 1 3 . 2  3 . . . . . 3 4 1 5
## TCL1A . .  . . . . . . 1 . . . . . . . . . . .  . 1 . . . . . . . .
## MS4A1 . 6  . . . . . . 1 1 1 . . . . . . . . . 36 1 2 . . 2 . . . .

矩阵中.的值代表 0(未检测到分子)。由于 scRNA-seq 矩阵中的大多数值都是 0,因此 Seurat 只要有可能就使用稀疏矩阵表示。这会显著节省 Drop-seq/inDrop/10x 数据的内存和速度。

dense.size <- object.size(as.matrix(pbmc.data))
dense.size
## 709591472 bytes

sparse.size <- object.size(pbmc.data)
sparse.size
## 29905192 bytes

dense.size/sparse.size
## 23.7 bytes

预处理

以下步骤涵盖 Seurat 中 scRNA-seq 数据的标准预处理工作流程。这些基于 QC 指标、数据标准化和缩放以及高度可变特征的检测的细胞选择和过滤。

Seurat 允许您轻松探索 QC 指标并根据任何用户定义的标准过滤细胞。常用的一些 QC 指标包括:

  • 每个细胞中检测到的唯一(unique)基因的数量
    • 低质量的细胞或空液滴通常含有很少的基因
    • 细胞双联体或多联体可能表现出异常高的基因计数
  • 同样,细胞内检测到的分子总数(与唯一(unique)基因密切相关)
  • 映射到线粒体基因组的读数百分比
    • 低质量/垂死细胞通常表现出广泛的线粒体污染
    • 我们使用 PercentageFeatureSet() 函数计算线粒体 QC 指标,该函数计算源自一组特征的计数百分比
    • 我们使用以 MT- 开头的所有基因的集合作为线粒体基因的集合
# The [[ operator can add columns to object metadata. This is a great place to stash QC stats
pbmc[["percent.mt"]] <- PercentageFeatureSet(pbmc, pattern = "^MT-")
  • Seurat 中的 QC 指标存储在哪里?

在下面的示例中,我们将 QC 指标可视化,并使用它们来过滤细胞。

我们过滤具有唯一特征计数超过 2,500 或少于 200 的细胞;我们过滤线粒体计数 >5% 的细胞

# Visualize QC metrics as a violin plot
VlnPlot(pbmc, features = c("nFeature_RNA""nCount_RNA""percent.mt"), ncol = 3)
alt
# FeatureScatter is typically used to visualize feature-feature relationships, but can be used
# for anything calculated by the object, i.e. columns in object metadata, PC scores etc.

plot1 <- FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "percent.mt")
plot2 <- FeatureScatter(pbmc, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")
plot1 + plot2
alt
pbmc <- subset(pbmc, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)

未完待续,持续关注!

Reference
[1]

Source: https://zenghensatijalab.org/seurat/articles/pbmc3k_tutorial

[2]

data: https://cf.10xgenomics.com/samples/cell/pbmc3k/pbmc3k_filtered_gene_bc_matrices.tar.gz

本文由 mdnice 多平台发布

这篇关于Seurat - 聚类教程 (1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/694269

相关文章

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地

电脑提示d3dx11_43.dll缺失怎么办? DLL文件丢失的多种修复教程

《电脑提示d3dx11_43.dll缺失怎么办?DLL文件丢失的多种修复教程》在使用电脑玩游戏或运行某些图形处理软件时,有时会遇到系统提示“d3dx11_43.dll缺失”的错误,下面我们就来分享超... 在计算机使用过程中,我们可能会遇到一些错误提示,其中之一就是缺失某个dll文件。其中,d3dx11_4

Linux下在线安装启动VNC教程

《Linux下在线安装启动VNC教程》本文指导在CentOS7上在线安装VNC,包含安装、配置密码、启动/停止、清理重启步骤及注意事项,强调需安装VNC桌面以避免黑屏,并解决端口冲突和目录权限问题... 目录描述安装VNC安装 VNC 桌面可能遇到的问题总结描js述linux中的VNC就类似于Window

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Web实现类似Excel表格锁定功能实战教程

《JavaWeb实现类似Excel表格锁定功能实战教程》本文将详细介绍通过创建特定div元素并利用CSS布局和JavaScript事件监听来实现类似Excel的锁定行和列效果的方法,感兴趣的朋友跟随... 目录1. 模拟Excel表格锁定功能2. 创建3个div元素实现表格锁定2.1 div元素布局设计2.