数字图像处理实验记录八(图像压缩实验)

2024-02-09 05:52

本文主要是介绍数字图像处理实验记录八(图像压缩实验),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:做这个实验的时候很忙,就都是你抄我我抄你了

一、基础知识

1.为什么要进行图像压缩:
图像的数据量巨大,对计算机的处理速度、存储容量要求高。传输信道带宽、通信链路容量一定,需要减少传输数据量,提高通信速度。因此要进行图像压缩,减少数据量。
2.怎么进行图像压缩:
我们使用霍夫曼编码进行压缩。霍夫曼编码原理是利用信息符号概率分布特性的变字长的编码方法。对于出现概率大的信息符号编以短字长的码,对于出现概率小的信息符号编以长字长的码。
在这里插入图片描述
在这里插入图片描述

二、实验要求

1.读入一幅灰度图像,计算该图像的平均信息量-熵。
(备注:可以读入小一些的图像,例如256256,512512的。)
2.使用霍夫曼编码的方法,对该图像进行压缩。
3. 计算编码后的平均码长及压缩比。

三、实验记录

任务1:

读入一幅灰度图像,计算该图像的平均信息量-熵。
(备注:可以读入小一些的图像,例如256256,512512的。)

%求一幅图像的熵值
clc
clear
close all
I=imread('Acat.png');
I = rgb2gray(I);G=256; %图像的灰度级
[height,width] = size(I); %获取输入值的高和宽
[count,x] = imhist(I,G);
p = count; %原始灰度直方图
I_size = height*width;
H_x = 0;
for i=1:256  %循环p(i) = count(i)/I_size;if p(i)~=0; %如果像素点的概率不为零H_x=-p(i)*log2(p(i))+H_x; %求熵值的公式end
end
H_x  %显示熵值

任务2:

使用霍夫曼编码的方法,对该图像进行压缩。

[M,N] = size(I);%将图像转为二维矩阵
I1 = I(:);%转为一维向量
k = 0:255;
dict = huffmandict(k,p); %根据灰度级k和概率数组P生成Huffman字典
enco = huffmanenco(I1,dict); 
deco = huffmandeco(enco,dict); %哈夫曼解码
Ide = col2im(deco,[M,N],[M,N],'distinct'); %把向量重新转换成图像块;
subplot(1,2,1);imshow(I);title('原始图像');
subplot(1,2,2);imshow(uint8(Ide));title('解码图像');

任务3:

计算编码后的平均码长及压缩比。

B=length(enco);
sumcode=length(deco);%编码后比特长度
CR=sumcode/B;%计算压缩率
disp(['原始图像 Bit: ',num2str(B),' bit']);
disp(['压缩图像 Bit: ',num2str(sumcode),' bit']);
disp(['压缩率: ',num2str(CR)]);

四、实验结果

任务1:

在这里插入图片描述

任务2:

在这里插入图片描述

任务3:

在这里插入图片描述

这篇关于数字图像处理实验记录八(图像压缩实验)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/693296

相关文章

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Spring Boot中定时任务Cron表达式的终极指南最佳实践记录

《SpringBoot中定时任务Cron表达式的终极指南最佳实践记录》本文详细介绍了SpringBoot中定时任务的实现方法,特别是Cron表达式的使用技巧和高级用法,从基础语法到复杂场景,从快速启... 目录一、Cron表达式基础1.1 Cron表达式结构1.2 核心语法规则二、Spring Boot中定

国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)

《国内环境搭建私有知识问答库踩坑记录(ollama+deepseek+ragflow)》本文给大家利用deepseek模型搭建私有知识问答库的详细步骤和遇到的问题及解决办法,感兴趣的朋友一起看看吧... 目录1. 第1步大家在安装完ollama后,需要到系统环境变量中添加两个变量2. 第3步 “在cmd中