AVR 328pb ADC基本介绍和使用

2024-02-08 23:36
文章标签 使用 介绍 基本 adc avr 328pb

本文主要是介绍AVR 328pb ADC基本介绍和使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AVR 328pb ADC基本介绍和使用


  • 📍结合参考同架构lgt8f328p中文文档:http://www.prodesign.com.cn/wp-content/uploads/2023/03/LGT8FX8P_databook_v1.0.4.pdf

📘328pb ADC特性

• 10-bit Resolution 10位分辨率
• 0.5 LSB Integral Non-linearity 0.5 LSB积分非线性
• ± 2 LSB Absolute Accuracy ±2 LSB绝对精度
• 13 - 260 μs Conversion Time 13-260μs转换时间
• Up to 76.9 kSPS (Up to 15 kSPS at Maximum Resolution) 高达76.9 kSPS(最大分辨率高达15 kSPS)
• 6 Multiplexed Single Ended Input Channels 6个多路复用单端输入通道
• 2 Additional Multiplexed Single Ended Input Channels (TQFP and QFN/MLF Package only) 2个额外的多路复用单端输入通道(仅限TQFP和QFN/MLF封装)
• Temperature Sensor Input Channel 温度传感器输入通道
• Optional Left Adjustment for ADC Result Readout ADC结果读数的可选左调整
• 0 - VCC ADC Input Voltage Range ADC结果读出的可选左调整0 - VCC
• Selectable 1.1V ADC Reference Voltage 可选1.1V ADC参考电压
• Free Running or Single Conversion Mode 自由运行或单次转换模式
• Interrupt on ADC Conversion Complete ADC转换完成时中断
• Sleep Mode Noise Canceler 睡眠模式降噪器

  • 🍁中断向量表:
    在这里插入图片描述

  • ADC模数转换器块原理图
    在这里插入图片描述

  • ADC自动触发逻辑
    在这里插入图片描述

  • ADC转换和分频
    在这里插入图片描述
    默认情况下,逐次近似电路需要一个输入频率在50 kHz和200 kHz之间的时钟频率,以获得最大分辨率。如果需要低于10位的分辨率,则对ADC的输入时钟频率可以高于200 kHz,以获得更高的采样率。

  • ADC时序图,第一次转换(单次转换模式)
    在这里插入图片描述

  • ADC定时图,自动触发转换

在这里插入图片描述

  • ⌛ADC转换时间
    在这里插入图片描述

📓ADC 参考电压

ADC的参考电压(VREF)表示ADC的转换范围。超过VREF的单端通道将导致代码接近0x3FF。VREF可以选择为AVCC、内部1.1V参考或外部AREF引脚。

📘ADC 相关寄存器

  • 🌿ADC多路复用器选择寄存器:ADMUX
    在这里插入图片描述
  • 🔖6-7位决定ADC参考电压选择。

位5-ADLAR: ADC左调整结果ADLAR位影响ADC转换结果在ADC数据寄存器中的呈现。向左写入一个ADLAR调整结果。否则,结果右调整。更改ADLAR位将立即影响ADC数据寄存器,而不管任何正在进行的转换。有关该位的完整描述,请参阅ADCL和ADCH。
位3:0-MUX[3:0]:模拟通道选择这些位的值选择哪些模拟输入连接到ADC。如果在转换期间更改了这些位,则在此转换完成之前更改不会生效。
在这里插入图片描述
在这里插入图片描述

  • ADC控制和状态寄存器A:ADCSRA
    在这里插入图片描述
    在这里插入图片描述

  • ADC控制和状态寄存器B:ADCSRB
    在这里插入图片描述

  • ADC数据寄存器低字节和高字节(ADLAR=0):ADCL and ADCH
    ADCL和ADCH寄存器对代表16位值,ADC数据寄存器。低字节[7:0](后缀L)可在原始偏移量处访问。高字节[15:8](后缀H)可在偏移量+0x01处访问。有关读取和写入16位寄存器的更多详细信息,请参阅访问16位定时器/计数器寄存器。当ADC转换完成时,结果在这两个寄存器中找到。当读取ADCL时,ADC数据寄存器不会更新,直到读取ADCH。因此,如果结果保持调整,并且不需要超过8位精度,则读取ADCH就足够了。否则,必须先读取ADCL,然后再读取ADCH。ADLAR位和ADMUX中的MUXn位会影响从寄存器读取结果的方式。如果设置了ADLAR(ADLAR=1),则结果向左调整。如果ADLAR被清除(ADLAR=0,这是默认值),则结果向右调整。
    在这里插入图片描述

  • ADC数据寄存器低字节和高字节(ADLAR=1):(ADCL and ADCH)
    ADCL和ADCH寄存器对代表16位值,ADC数据寄存器。低字节[7:0](后缀L)可在原始偏移量处访问。高字节[15:8](后缀H)可在偏移量+0x01处访问。有关读取和写入16位寄存器的更多详细信息,请参阅访问16位定时器/计数器寄存器。当ADC转换完成时,结果在这两个寄存器中找到。当读取ADCL时,ADC数据寄存器不会更新,直到读取ADCH。因此,如果结果保持调整,并且不需要超过8位精度,则读取ADCH就足够了。否则,必须先读取ADCL,然后再读取ADCH。ADLAR位和ADMUX中的MUXn位会影响从寄存器读取结果的方式。如果设置了ADLAR(ADLAR=1),则结果向左调整。如果ADLAR被清除(ADLAR=0,这是默认值),则结果向右调整。
    在这里插入图片描述

📗测试例程

  • 📝例程采用AREF引脚的使用5V供电电压作为参考。采集通道0(PC0引脚)输入电压值。
//官方ADC例程编号:AN17644 Getting STARTED with AVR
#include "atmel_start.h"#include <util/delay.h>
#include <avr/sleep.h>
#include <avr/power.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include "stdio.h"uint16_t adc_res = 0;/**************************************************************
PIN change interrupt ISR
LED toggle code is commented as LED dimming code has been added in main
****************************************************************/ISR(PCINT0_vect)
{// 	if (!(PINB & (1<<PINB7))) // if PINB7 is low (Switch pressed)// 	{// 		PORTB |= (1<<PORTB5); // Turn ON LED// 	}// 	else// 	{// 		PORTB &= ~(1<<PORTB5); // Turn OFF LED// 	}
}uint16_t ReadADC(uint8_t ADCchannel)
{// select ADC channel with safety maskADMUX = (ADMUX & 0xF0) | (ADCchannel & 0x0F);//// single conversion modeADCSRA |= (1 << ADSC);// wait until ADC conversion is completewhile (ADCSRA & (1 << ADSC));return ADC;
}
void optimize_power_consumption()
{DIDR0 |= 0xC0; /*ADC7D and ADC6D are undefined in header file so set bits this way*//* Disable digital input buffer on Analog comparator pins */DIDR1 |= (1 << AIN1D) | (1 << AIN0D);/* Disable Analog Comparator */ACSR |= (1 << ACD);/*Watchdog Timer OFF*//* Disable interrupts */cli();/* Reset watchdog timer */wdt_reset();/* Clear WDRF in MCUSR */MCUSR &= ~(1 << WDRF);/* Turn off WDT */WDTCSR = 0x00;/* Set sleep mode */set_sleep_mode(SLEEP_MODE_PWR_DOWN);
}int main(void)
{system_init();optimize_power_consumption();TIMSK1 |= (1 << OCIE1A); // Enable output compare match A interruptPCMSK0 |= (1 << PCINT7); // Enable Pin Change Interrupt 7PCICR |= (1 << PCIE0);   // Enable the interrupt enable bit for PCINTsei();while (1){ADCSRA &= ~(1 << ADEN);//禁用ADCpower_adc_disable();sleep_mode();power_adc_enable();//AVCC AREF使用5V供电电压作为参考ADCSRA |= (1 << ADEN);//使能ADCadc_res = ReadADC(0);//通道0:PC0printf("adc_value:%d",adc_res);_delay_ms(1000);LED_toggle_level();}return 0;
}
  • 裸机ADC0测试代码
/** USART_PRINTF.c** Created: 2024/2/8 19:50:27* Author : Administrator*/#include <avr/io.h>
#include "util/delay.h"
//#include "util/setbaud.h"
#include "avr/sfr_defs.h"//包含loop_until_bit_is_set函数
#include "avr/interrupt.h"
// Standard Input/Output functions
#include <stdio.h>// Voltage Reference: AVCC pin
#define ADC_VREF_TYPE ((0<<REFS1) | (1<<REFS0) | (0<<ADLAR))// Read the AD conversion result
unsigned int ReadADC(unsigned char adc_input)
{ADMUX=adc_input | ADC_VREF_TYPE;// Delay needed for the stabilization of the ADC input voltage_delay_us(10);// Start the AD conversionADCSRA|=(1<<ADSC);// Wait for the AD conversion to completewhile ((ADCSRA & (1<<ADIF))==0);ADCSRA|=(1<<ADIF);return ADCW;
}// ADC initialization
void ADC_Init(void)
{// ADC Clock frequency: 125.000 kHz// ADC Voltage Reference: AVCC pin// ADC Auto Trigger Source: Free Running// Digital input buffers on ADC0: Off, ADC1: On, ADC2: On, ADC3: On// ADC4: On, ADC5: On, ADC6: On, ADC7: OnDIDR0=(0<<ADC7D) | (0<<ADC6D) | (0<<ADC5D) | (0<<ADC4D) | (0<<ADC3D) | (0<<ADC2D) | (0<<ADC1D) | (1<<ADC0D);ADMUX=ADC_VREF_TYPE;ADCSRA=(1<<ADEN) | (0<<ADSC) | (1<<ADATE) | (0<<ADIF) | (0<<ADIE) | (1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0);ADCSRB=(0<<ADTS2) | (0<<ADTS1) | (0<<ADTS0);// Ensure that the ADC is enabledPRR0&= ~(1<<PRADC);
}static int	uart_putchar(char c, FILE *stream)
{//   if (c == '\n')//       uart_putchar('\r', stream);//   loop_until_bit_is_set(UCSR0A, UDRE0);//需包含:avr/sfr_defs.h// /* Wait for empty transmit buffer */while ( !( UCSR0A & (1<<UDRE0)) );UDR0 = c;return 0;
}// 配置输出流
static FILE mystdout = FDEV_SETUP_STREAM(uart_putchar, NULL,_FDEV_SETUP_WRITE);
//static FILE USART0_stream = FDEV_SETUP_STREAM(NULL, uart_getchar, _FDEV_SETUP_RW);//#define BAUD 9600
#define F_CPU 16000000UL
#define MYUBRR (F_CPU/16/BAUD-1)// 串口初始化
void USART0_Init(void)
{UCSR0A=(0<<RXC0) | (0<<TXC0) | (0<<UDRE0) | (0<<FE0) | (0<<DOR0) | (0<<UPE0) | (0<<U2X0) | (0<<MPCM0);/*Enable receiver and transmitter */UCSR0B=(1<<RXCIE0) | (0<<TXCIE0) | (0<<UDRIE0) | (1<<RXEN0) | (1<<TXEN0) | (0<<UCSZ02) | (0<<RXB80) | (0<<TXB80);/* Set frame format: 8data, 1stop bit */UCSR0C=(0<<UMSEL01) | (0<<UMSEL00) | (0<<UPM01) | (0<<UPM00) | (0<<USBS0) | (1<<UCSZ01) | (1<<UCSZ00) | (0<<UCPOL0);/*Set baud rate */UBRR0H = (unsigned char)(MYUBRR>>8);UBRR0L = (unsigned char)MYUBRR;stdout = &mystdout;//输出流配置// Ensure that the USART0 is enabledPRR0&= ~(1<<PRUSART0);// Globally enable interruptssei();}
void USART_Transmit( unsigned char data )
{/* Wait for empty transmit buffer */while ( !( UCSR0A & (1<<UDRE0)) );/* Put data into buffer, sends the data */UDR0 = data;
}unsigned char USART_Receive( void )
{/* Wait for data to be received */while ( !(UCSR0A & (1<<RXC0)) );/* Get and return received data from buffer */return UDR0;
}void SYS_Clock_Init()
{CLKPR=(1<<CLKPCE);CLKPR=(0<<CLKPCE) | (0<<CLKPS3) | (0<<CLKPS2) | (0<<CLKPS1) | (0<<CLKPS0);
}int main(void)
{/* Replace with your application code */unsigned int adc_res;SYS_Clock_Init();USART0_Init();DDRB = PINB5;//配置PB5为输出模式ADC_Init();//ADC initializationwhile (1){PORTB ^= (1 << PINB5);//PB5状态翻转_delay_ms(1000); // 使用util/delay.h中的宏函数来实现1毫秒的延时adc_res = ReadADC(0);//通道0:PC0printf("adc_value:%d",adc_res);}
}

在这里插入图片描述

这篇关于AVR 328pb ADC基本介绍和使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/692535

相关文章

C#中checked关键字的使用小结

《C#中checked关键字的使用小结》本文主要介绍了C#中checked关键字的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录✅ 为什么需要checked? 问题:整数溢出是“静默China编程”的(默认)checked的三种用

C#中预处理器指令的使用小结

《C#中预处理器指令的使用小结》本文主要介绍了C#中预处理器指令的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 第 1 名:#if/#else/#elif/#endif✅用途:条件编译(绝对最常用!) 典型场景: 示例

Mysql中RelayLog中继日志的使用

《Mysql中RelayLog中继日志的使用》MySQLRelayLog中继日志是主从复制架构中的核心组件,负责将从主库获取的Binlog事件暂存并应用到从库,本文就来详细的介绍一下RelayLog中... 目录一、什么是 Relay Log(中继日志)二、Relay Log 的工作流程三、Relay Lo

使用Redis实现会话管理的示例代码

《使用Redis实现会话管理的示例代码》文章介绍了如何使用Redis实现会话管理,包括会话的创建、读取、更新和删除操作,通过设置会话超时时间并重置,可以确保会话在用户持续活动期间不会过期,此外,展示了... 目录1. 会话管理的基本概念2. 使用Redis实现会话管理2.1 引入依赖2.2 会话管理基本操作

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

springboot3.x使用@NacosValue无法获取配置信息的解决过程

《springboot3.x使用@NacosValue无法获取配置信息的解决过程》在SpringBoot3.x中升级Nacos依赖后,使用@NacosValue无法动态获取配置,通过引入SpringC... 目录一、python问题描述二、解决方案总结一、问题描述springboot从2android.x

SpringBoot整合AOP及使用案例实战

《SpringBoot整合AOP及使用案例实战》本文详细介绍了SpringAOP中的切入点表达式,重点讲解了execution表达式的语法和用法,通过案例实战,展示了AOP的基本使用、结合自定义注解以... 目录一、 引入依赖二、切入点表达式详解三、案例实战1. AOP基本使用2. AOP结合自定义注解3.

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req

使用Python将PDF表格自动提取并写入Word文档表格

《使用Python将PDF表格自动提取并写入Word文档表格》在实际办公与数据处理场景中,PDF文件里的表格往往无法直接复制到Word中,本文将介绍如何使用Python从PDF文件中提取表格数据,并将... 目录引言1. 加载 PDF 文件并准备 Word 文档2. 提取 PDF 表格并创建 Word 表格

使用Python实现局域网远程监控电脑屏幕的方法

《使用Python实现局域网远程监控电脑屏幕的方法》文章介绍了两种使用Python在局域网内实现远程监控电脑屏幕的方法,方法一使用mss和socket,方法二使用PyAutoGUI和Flask,每种方... 目录方法一:使用mss和socket实现屏幕共享服务端(被监控端)客户端(监控端)方法二:使用PyA