堆排及时间复杂度分析

2024-02-08 19:44
文章标签 分析 复杂度 时间 堆排

本文主要是介绍堆排及时间复杂度分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

箴言:

初始阶段,不需要去纠结那一种更优美,非要找出那一种是最好的,其实能解决问题的就是好办法。

一,常见排序时间复杂度

冒泡快排归并堆排桶排
时间O(n^2)O(nlogn)O(nlogn)O(nlogn)kn
空间O(1)O(1)O(nlogn)O(1)kn

二,堆排

前情提要:

堆属于完全树,完全树可以理解为一个数组。如果不是完全树,就没办法和数组等价,就不会有下面这种父级和子级之间的关系。

已知父级下标i
左孩子下标: 2*i+1
右孩子下标: 2*i+2
已知孩子结点j(无论左还是右)
父级下标 (j-1)/2

堆排序过程:

堆排序分成两个阶段,第一个阶段从由无序数组建立一个大/小根堆,第二个阶段在大/小根堆的基础上调整,形成有序数组。

从无序数组到大根堆:

对于数组中每一个元素,我们需要将其和其父级做对比,若比父级大,则进行交换,直到最顶层为止。

代码:(其实找父亲的时候可以不区分左右减一除二即可,我这里就不改了)

    public static void builddui(int[] arr) {for (int i = 0; i < arr.length; i++) {int j = i;int p = 0;if (j % 2 == 1) {//左孩子p = (j - 1) / 2;} else {p = (j - 2) / 2;//右孩子}while (p >= 0 && arr[p] < arr[j]) {int t = arr[p];//交换位置arr[p] = arr[j];arr[j] = t;j = p;p = (j - 1) / 2;}}}

从大根堆到有序序列:

最后一个位置和堆顶交换,将交换之后的堆顶下沉到正确的位置。然后堆顶和倒数第二个交换,堆顶下沉到正确的位置,直到剩下一个为止。这是一个堆顶元素不断下沉的过程。

代码:(r表示的是最后一个的索引位置)

    public static void weichidui(int[] arr, int r) {int t = arr[r];arr[r] = arr[0];arr[0] = t;int cur = 0;//当前下标while (2 * cur + 1 < r) {int index = 2 * cur + 1;int maxv = arr[index];if (2 * cur + 2 < r && arr[index] < arr[2 * cur + 2]) {index = 2 * cur + 2;maxv = arr[2 * cur + 2];}if (maxv > arr[cur]) {int tmp = arr[cur];arr[cur] = arr[index];arr[index] = tmp;}cur = index;}}

时间复杂度分析:

上述两个阶段分别分析: 从无序序列到建成大顶堆: 已知数组中数量为n,每正确插入一个元素,时间复杂度为logn(因为树的深度为logn),因为插入n个元素,时间复杂度为nlogn。

从大顶堆到有序序列:每次首尾交换之后都需要将堆顶元素下沉到正确的位置,时间复杂度为logn(因为树的深度为logn,比较交换次数其实是小于logn的,但是理解为logn就行),需要下沉n次,所以时间复杂度是nlogn。

ABOVE ALL,堆排时间复杂度为2nlogn,也就是O(nlogn),一切操作都是在原数组上进行的操作,所以空间复杂度为O(1)。

堆排序是一个完美的排序方式,无论时间或者空间,数据量小的时候差距不明显,数据量越大,优势就会越明显。

代码:

数组:[34,56,23,33,5,46,4,57,6,76,34,42,634,6,536,3,3423,3,1,5,537,3,57,3563,4,65,764,4]

import java.util.Arrays;/*** @Author YuLing* @Date 2024-02-07 19:14* @Description:* @Version 1.0*/
public class dui {public static void main(String[] args) {int[] arr = new int[]{34,56,23,33,5,46,4,57,6,76,34,42,634,6,536,3,3423,3,1,5,537,3,57,3563,4,65,764,4};builddui(arr);System.out.println(Arrays.toString(arr));for (int i = 0; i < arr.length; i++) {weichidui(arr,  arr.length - 1 - i);}System.out.println(Arrays.toString(arr));}public static void builddui(int[] arr) {for (int i = 0; i < arr.length; i++) {int j = i;int p = 0;if (j % 2 == 1) {//左孩子p = (j - 1) / 2;} else {p = (j - 2) / 2;//右孩子}while (p >= 0 && arr[p] < arr[j]) {int t = arr[p];//交换位置arr[p] = arr[j];arr[j] = t;j = p;p = (j - 1) / 2;}}}public static void weichidui(int[] arr, int r) {int t = arr[r];arr[r] = arr[0];arr[0] = t;int cur = 0;//当前下标while (2 * cur + 1 < r) {int index = 2 * cur + 1;int maxv = arr[index];if (2 * cur + 2 < r && arr[index] < arr[2 * cur + 2]) {index = 2 * cur + 2;maxv = arr[2 * cur + 2];}if (maxv > arr[cur]) {int tmp = arr[cur];arr[cur] = arr[index];arr[index] = tmp;}cur = index;}}
}

输出:

[3563, 634, 3423, 57, 537, 764, 76, 34, 6, 56, 57, 46, 536, 4, 6, 3, 33, 3, 1, 5, 5, 3, 34, 23, 4, 42, 65, 4]
[1, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 23, 33, 34, 34, 42, 46, 56, 57, 57, 65, 76, 536, 537, 634, 764, 3423, 3563]

这篇关于堆排及时间复杂度分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/692028

相关文章

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java多种文件复制方式以及效率对比分析

《Java多种文件复制方式以及效率对比分析》本文总结了Java复制文件的多种方式,包括传统的字节流、字符流、NIO系列、第三方包中的FileUtils等,并提供了不同方式的效率比较,同时,还介绍了遍历... 目录1 背景2 概述3 遍历3.1listFiles()3.2list()3.3org.codeha

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe