堆排及时间复杂度分析

2024-02-08 19:44
文章标签 分析 复杂度 时间 堆排

本文主要是介绍堆排及时间复杂度分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

箴言:

初始阶段,不需要去纠结那一种更优美,非要找出那一种是最好的,其实能解决问题的就是好办法。

一,常见排序时间复杂度

冒泡快排归并堆排桶排
时间O(n^2)O(nlogn)O(nlogn)O(nlogn)kn
空间O(1)O(1)O(nlogn)O(1)kn

二,堆排

前情提要:

堆属于完全树,完全树可以理解为一个数组。如果不是完全树,就没办法和数组等价,就不会有下面这种父级和子级之间的关系。

已知父级下标i
左孩子下标: 2*i+1
右孩子下标: 2*i+2
已知孩子结点j(无论左还是右)
父级下标 (j-1)/2

堆排序过程:

堆排序分成两个阶段,第一个阶段从由无序数组建立一个大/小根堆,第二个阶段在大/小根堆的基础上调整,形成有序数组。

从无序数组到大根堆:

对于数组中每一个元素,我们需要将其和其父级做对比,若比父级大,则进行交换,直到最顶层为止。

代码:(其实找父亲的时候可以不区分左右减一除二即可,我这里就不改了)

    public static void builddui(int[] arr) {for (int i = 0; i < arr.length; i++) {int j = i;int p = 0;if (j % 2 == 1) {//左孩子p = (j - 1) / 2;} else {p = (j - 2) / 2;//右孩子}while (p >= 0 && arr[p] < arr[j]) {int t = arr[p];//交换位置arr[p] = arr[j];arr[j] = t;j = p;p = (j - 1) / 2;}}}

从大根堆到有序序列:

最后一个位置和堆顶交换,将交换之后的堆顶下沉到正确的位置。然后堆顶和倒数第二个交换,堆顶下沉到正确的位置,直到剩下一个为止。这是一个堆顶元素不断下沉的过程。

代码:(r表示的是最后一个的索引位置)

    public static void weichidui(int[] arr, int r) {int t = arr[r];arr[r] = arr[0];arr[0] = t;int cur = 0;//当前下标while (2 * cur + 1 < r) {int index = 2 * cur + 1;int maxv = arr[index];if (2 * cur + 2 < r && arr[index] < arr[2 * cur + 2]) {index = 2 * cur + 2;maxv = arr[2 * cur + 2];}if (maxv > arr[cur]) {int tmp = arr[cur];arr[cur] = arr[index];arr[index] = tmp;}cur = index;}}

时间复杂度分析:

上述两个阶段分别分析: 从无序序列到建成大顶堆: 已知数组中数量为n,每正确插入一个元素,时间复杂度为logn(因为树的深度为logn),因为插入n个元素,时间复杂度为nlogn。

从大顶堆到有序序列:每次首尾交换之后都需要将堆顶元素下沉到正确的位置,时间复杂度为logn(因为树的深度为logn,比较交换次数其实是小于logn的,但是理解为logn就行),需要下沉n次,所以时间复杂度是nlogn。

ABOVE ALL,堆排时间复杂度为2nlogn,也就是O(nlogn),一切操作都是在原数组上进行的操作,所以空间复杂度为O(1)。

堆排序是一个完美的排序方式,无论时间或者空间,数据量小的时候差距不明显,数据量越大,优势就会越明显。

代码:

数组:[34,56,23,33,5,46,4,57,6,76,34,42,634,6,536,3,3423,3,1,5,537,3,57,3563,4,65,764,4]

import java.util.Arrays;/*** @Author YuLing* @Date 2024-02-07 19:14* @Description:* @Version 1.0*/
public class dui {public static void main(String[] args) {int[] arr = new int[]{34,56,23,33,5,46,4,57,6,76,34,42,634,6,536,3,3423,3,1,5,537,3,57,3563,4,65,764,4};builddui(arr);System.out.println(Arrays.toString(arr));for (int i = 0; i < arr.length; i++) {weichidui(arr,  arr.length - 1 - i);}System.out.println(Arrays.toString(arr));}public static void builddui(int[] arr) {for (int i = 0; i < arr.length; i++) {int j = i;int p = 0;if (j % 2 == 1) {//左孩子p = (j - 1) / 2;} else {p = (j - 2) / 2;//右孩子}while (p >= 0 && arr[p] < arr[j]) {int t = arr[p];//交换位置arr[p] = arr[j];arr[j] = t;j = p;p = (j - 1) / 2;}}}public static void weichidui(int[] arr, int r) {int t = arr[r];arr[r] = arr[0];arr[0] = t;int cur = 0;//当前下标while (2 * cur + 1 < r) {int index = 2 * cur + 1;int maxv = arr[index];if (2 * cur + 2 < r && arr[index] < arr[2 * cur + 2]) {index = 2 * cur + 2;maxv = arr[2 * cur + 2];}if (maxv > arr[cur]) {int tmp = arr[cur];arr[cur] = arr[index];arr[index] = tmp;}cur = index;}}
}

输出:

[3563, 634, 3423, 57, 537, 764, 76, 34, 6, 56, 57, 46, 536, 4, 6, 3, 33, 3, 1, 5, 5, 3, 34, 23, 4, 42, 65, 4]
[1, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 23, 33, 34, 34, 42, 46, 56, 57, 57, 65, 76, 536, 537, 634, 764, 3423, 3563]

这篇关于堆排及时间复杂度分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/692028

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

MySQL中DATE_FORMAT时间函数的使用小结

《MySQL中DATE_FORMAT时间函数的使用小结》本文主要介绍了MySQL中DATE_FORMAT时间函数的使用小结,用于格式化日期/时间字段,可提取年月、统计月份数据、精确到天,对大家的学习或... 目录前言DATE_FORMAT时间函数总结前言mysql可以使用DATE_FORMAT获取日期字段

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl