rust语言tokio库底层原理解析

2024-02-08 17:36

本文主要是介绍rust语言tokio库底层原理解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1 rust版本及tokio版本说明
  • 1 tokio简介
  • 2 tokio::main
    • 2.1 tokio::main使用多线程模式
    • 2.2 tokio::main使用单线程模式
  • 3 builder.build()函数
    • 3.1 build_threaded_runtime()函数
    • 新的改变
    • 功能快捷键
    • 合理的创建标题,有助于目录的生成
    • 如何改变文本的样式
    • 插入链接与图片
    • 如何插入一段漂亮的代码片
    • 生成一个适合你的列表
    • 创建一个表格
      • 设定内容居中、居左、居右
      • SmartyPants
    • 创建一个自定义列表
    • 如何创建一个注脚
    • 注释也是必不可少的
    • KaTeX数学公式
    • 新的甘特图功能,丰富你的文章
    • UML 图表
    • FLowchart流程图
    • 导出与导入
      • 导出
      • 导入

更新中-2024-02-08

1 rust版本及tokio版本说明

rust版本为1.60

[10307750@zte.intra@LIN-9AC90CF34F9 ~]$ cargo --version
cargo 1.60.0 (d1fd9fe 2022-03-01)
[10307750@zte.intra@LIN-9AC90CF34F9 ~]$ rustup --version
rustup 1.26.0 (5af9b9484 2023-04-05)
info: This is the version for the rustup toolchain manager, not the rustc compiler.
info: The currently active `rustc` version is `rustc 1.60.0 (7737e0b5c 2022-04-04)`
[10307750@zte.intra@LIN-9AC90CF34F9 ~]$ rustup toolchain list
stable-x86_64-unknown-linux-gnu
nightly-x86_64-unknown-linux-gnu
1.59-x86_64-unknown-linux-gnu
1.60-x86_64-unknown-linux-gnu (default)
1.64-x86_64-unknown-linux-gnu
1.65-x86_64-unknown-linux-gnu

tokio版本为1.0.0

[package]
name = "rust_tokio"
version = "0.1.0"
edition = "2021"# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html[dependencies]
tokio = { version = "1.0.0", features = ["full"] }

1 tokio简介

2 tokio::main

当我们要使用tokio库时,需要在主函数上定义tokio::main,如下所示:

2.1 tokio::main使用多线程模式

多线程模式即main函数为主线程,另外还有一些worker工作线程。如下:

use tokio;#[tokio::main]
async fn main() {tokio::time::sleep(tokio::time::Duration::new(1, 0)).await;println!("hello world!");
}

这个#[tokio::main]宏定义实际上是#[tokio::main(flavor = "multi_thread", worker_threads = 7)],如下所示:

use tokio;#[tokio::main(flavor = "multi_thread", worker_threads = 7)]
async fn main() {tokio::time::sleep(tokio::time::Duration::new(1, 0)).await;println!("hello world!");
}

flavor="multi_thread"表示当前使用的是多线程模式,worker_threads=7表示产生7个工作线程。#[tokio::main]宏定义如果没有手动指定worker_threads数量,tokio则会自动生成worker_threads数量,该数量主要与当前运行环境的CPU数量有关,其对应关系为1个cpu core对应1个worker_thread工作线程。即worker_thread_nums = CPU core nums

上述代码随后会被展开,展开成如下代码:

fn main() {let mut builder = tokio::runtime::Builder::new_multi_thread();let runtime = builder.enable_all().build().unwrap();runtime.block_on(async {tokio::time::sleep(tokio::time::Duration::new(1, 0)).await;println!("hello world!");});
}

更易理解的写法为如下:

use tokio;fn main() {// 创建一个builder,设置为multi_thread模式,此时的线程数量还为Nonelet mut builder = tokio::runtime::Builder::new_multi_thread();// 构建tokio的runtime运行时,创建线程池,数量为worker_thread nums = cpu core let runtime = builder.enable_all().build().unwrap();// block_on函数是真正执行自己写的代码的部分,为阻塞式运行// 只有当block_on中的内容完全执行结束才会继续执行main函数block_on后面的内容runtime.block_on(tokio_main());
}// 自己的main函数逻辑代码
async fn tokio_main() {tokio::time::sleep(tokio::time::Duration::new(1, 0)).await;println!("hello world!");
}

2.2 tokio::main使用单线程模式

单线程模式的意思则是只有main一个线程,没有worker_thread工作线程,且在后续的使用中,也不会去创建worker_thread工作线程。单线程模式必须手动在#[tokio::main]宏定义中指定current_thread。如下所示:

use tokio;#[tokio::main(flavor = "current_thread")]
async fn main() {tokio::time::sleep(tokio::time::Duration::new(1, 0)).await;println!("hello world!");
}

在上述代码中,定义了一个async块,为main()函数,这个async块则会在代码展开的时候,作为runtime.block_on()函数的入参,如下所示:

use tokio;fn main() {// 创建一个builder,设置为current_thread模式let mut builder = tokio::runtime::Builder::new_current_thread();// 构建tokio的runtime运行时let runtime = builder.enable_all().build().unwrap();// block_on函数是真正执行自己写的代码的部分,为阻塞式运行// 只有当block_on中的内容完全执行结束才会继续执行main函数block_on后面的内容runtime.block_on(async {tokio::time::sleep(tokio::time::Duration::new(1, 0)).await;println!("hello world!");});
}

或者写成如下格式更好理解:

use tokio;fn main() {// 创建一个builder,设置为current_thread模式let mut builder = tokio::runtime::Builder::new_current_thread();// 构建tokio的runtime运行时let runtime = builder.enable_all().build().unwrap();// block_on函数是真正执行自己写的代码的部分,为阻塞式运行// 只有当block_on中的内容完全执行结束才会继续执行main函数block_on后面的内容runtime.block_on(tokio_main());
}// 自己的main函数逻辑代码
async fn tokio_main() {tokio::time::sleep(tokio::time::Duration::new(1, 0)).await;println!("hello world!");
}

3 builder.build()函数

build函数会调用build_threaded_runtime创建多线程模式

3.1 build_threaded_runtime()函数

调用create_blocking_pool函数
BlockingPool::new()函数则会创建一个BlockPool结构体,这个结构体中有一个Shared结构体

pub(crate) fn new(builder: &Builder, thread_cap: usize) -> BlockingPool {let (shutdown_tx, shutdown_rx) = shutdown::channel();let keep_alive = builder.keep_alive.unwrap_or(KEEP_ALIVE);BlockingPool {spawner: Spawner {inner: Arc::new(Inner {// 创建shared结构体shared: Mutex::new(Shared {queue: VecDeque::new(),num_th: 0,num_idle: 0,num_notify: 0,shutdown: false,shutdown_tx: Some(shutdown_tx),last_exiting_thread: None,worker_threads: HashMap::new(),worker_thread_index: 0,}),condvar: Condvar::new(),thread_name: builder.thread_name.clone(),stack_size: builder.thread_stack_size,after_start: builder.after_start.clone(),before_stop: builder.before_stop.clone(),thread_cap,keep_alive,}),},shutdown_rx,}}

Shared结构体如下:

// BlockingPool线程池中共享的一些数据结构
struct Shared {// queue队列,BlockingPool线程池中的线程会从这个queue中取taskqueue: VecDeque<Task>,// 一共有num_th个线程num_th: usize,// 有num_idle个线程处于闲置状态,什么事情都没干num_idle: u32,// 有num_notify个线程被通知有任务可以拿来处理,即有num_notify个线程处于忙碌中。num_notify: u32,// 线程池shutdown相关的事情。shutdown: bool,shutdown_tx: Option<shutdown::Sender>,/// Prior to shutdown, we clean up JoinHandles by having each timed-out/// thread join on the previous timed-out thread. This is not strictly/// necessary but helps avoid Valgrind false positives, see/// https://github.com/tokio-rs/tokio/commit/646fbae76535e397ef79dbcaacb945d4c829f666/// for more information.last_exiting_thread: Option<thread::JoinHandle<()>>,/// This holds the JoinHandles for all running threads; on shutdown, the thread/// calling shutdown handles joining on these.// 所有的worker_threadworker_threads: HashMap<usize, thread::JoinHandle<()>>,/// This is a counter used to iterate worker_threads in a consistent order (for loom's/// benefit)worker_thread_index: usize,
}

你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。

新的改变

我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:

  1. 全新的界面设计 ,将会带来全新的写作体验;
  2. 在创作中心设置你喜爱的代码高亮样式,Markdown 将代码片显示选择的高亮样式 进行展示;
  3. 增加了 图片拖拽 功能,你可以将本地的图片直接拖拽到编辑区域直接展示;
  4. 全新的 KaTeX数学公式 语法;
  5. 增加了支持甘特图的mermaid语法1 功能;
  6. 增加了 多屏幕编辑 Markdown文章功能;
  7. 增加了 焦点写作模式、预览模式、简洁写作模式、左右区域同步滚轮设置 等功能,功能按钮位于编辑区域与预览区域中间;
  8. 增加了 检查列表 功能。

功能快捷键

撤销:Ctrl/Command + Z
重做:Ctrl/Command + Y
加粗:Ctrl/Command + B
斜体:Ctrl/Command + I
标题:Ctrl/Command + Shift + H
无序列表:Ctrl/Command + Shift + U
有序列表:Ctrl/Command + Shift + O
检查列表:Ctrl/Command + Shift + C
插入代码:Ctrl/Command + Shift + K
插入链接:Ctrl/Command + Shift + L
插入图片:Ctrl/Command + Shift + G
查找:Ctrl/Command + F
替换:Ctrl/Command + G

合理的创建标题,有助于目录的生成

直接输入1次#,并按下space后,将生成1级标题。
输入2次#,并按下space后,将生成2级标题。
以此类推,我们支持6级标题。有助于使用TOC语法后生成一个完美的目录。

如何改变文本的样式

强调文本 强调文本

加粗文本 加粗文本

标记文本

删除文本

引用文本

H2O is是液体。

210 运算结果是 1024.

插入链接与图片

链接: link.

图片: Alt

带尺寸的图片: Alt

居中的图片: Alt

居中并且带尺寸的图片: Alt

当然,我们为了让用户更加便捷,我们增加了图片拖拽功能。

如何插入一段漂亮的代码片

去博客设置页面,选择一款你喜欢的代码片高亮样式,下面展示同样高亮的 代码片.

// An highlighted block
var foo = 'bar';

生成一个适合你的列表

  • 项目
    • 项目
      • 项目
  1. 项目1
  2. 项目2
  3. 项目3
  • 计划任务
  • 完成任务

创建一个表格

一个简单的表格是这么创建的:

项目Value
电脑$1600
手机$12
导管$1

设定内容居中、居左、居右

使用:---------:居中
使用:----------居左
使用----------:居右

第一列第二列第三列
第一列文本居中第二列文本居右第三列文本居左

SmartyPants

SmartyPants将ASCII标点字符转换为“智能”印刷标点HTML实体。例如:

TYPEASCIIHTML
Single backticks'Isn't this fun?'‘Isn’t this fun?’
Quotes"Isn't this fun?"“Isn’t this fun?”
Dashes-- is en-dash, --- is em-dash– is en-dash, — is em-dash

创建一个自定义列表

Markdown
Text-to- HTML conversion tool
Authors
John
Luke

如何创建一个注脚

一个具有注脚的文本。2

注释也是必不可少的

Markdown将文本转换为 HTML

KaTeX数学公式

您可以使用渲染LaTeX数学表达式 KaTeX:

Gamma公式展示 Γ ( n ) = ( n − 1 ) ! ∀ n ∈ N \Gamma(n) = (n-1)!\quad\forall n\in\mathbb N Γ(n)=(n1)!nN 是通过欧拉积分

Γ ( z ) = ∫ 0 ∞ t z − 1 e − t d t . \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt\,. Γ(z)=0tz1etdt.

你可以找到更多关于的信息 LaTeX 数学表达式here.

新的甘特图功能,丰富你的文章

2014-01-07 2014-01-09 2014-01-11 2014-01-13 2014-01-15 2014-01-17 2014-01-19 2014-01-21 已完成 进行中 计划一 计划二 现有任务 Adding GANTT diagram functionality to mermaid
  • 关于 甘特图 语法,参考 这儿,

UML 图表

可以使用UML图表进行渲染。 Mermaid. 例如下面产生的一个序列图:

张三 李四 王五 你好!李四, 最近怎么样? 你最近怎么样,王五? 我很好,谢谢! 我很好,谢谢! 李四想了很长时间, 文字太长了 不适合放在一行. 打量着王五... 很好... 王五, 你怎么样? 张三 李四 王五

这将产生一个流程图。:

链接
长方形
圆角长方形
菱形
  • 关于 Mermaid 语法,参考 这儿,

FLowchart流程图

我们依旧会支持flowchart的流程图:

Created with Raphaël 2.3.0 开始 我的操作 确认? 结束 yes no
  • 关于 Flowchart流程图 语法,参考 这儿.

导出与导入

导出

如果你想尝试使用此编辑器, 你可以在此篇文章任意编辑。当你完成了一篇文章的写作, 在上方工具栏找到 文章导出 ,生成一个.md文件或者.html文件进行本地保存。

导入

如果你想加载一篇你写过的.md文件,在上方工具栏可以选择导入功能进行对应扩展名的文件导入,
继续你的创作。


  1. mermaid语法说明 ↩︎

  2. 注脚的解释 ↩︎

这篇关于rust语言tokio库底层原理解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/691719

相关文章

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组