【Python 3 爬虫学习笔记】使用Python3 爬取猫眼《西虹市首富》

本文主要是介绍【Python 3 爬虫学习笔记】使用Python3 爬取猫眼《西虹市首富》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转自微信公众号《数据森麟》
直接上代码:

# 调用相关包
import json
import random
import requests
import time
import pandas as pd
import os
from pyecharts import Bar, Geo, Line, Overlap
import jieba
from scipy.misc import imread
from wordcloud import WordCloud, ImageColorGenerator
import  matplotlib.pyplot as plt
from collections import Counter# 设置headers和cookie
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win32; x32; rv:54.0) Gecko/20100101 Firefox/54.0','Connection': 'keep-alive'
}
cookies = '你的Cookies'
cookie = {}
for line in cookies.split(';'):name, value = cookies.strip().split('=', 1)cookie[name] = value# 爬取数据
tomato = pd.DataFrame(columns=['data', 'score', 'city', 'comment', 'nick'])
for i in range(0, 1000):j = random.randint(1, 1000)print(str(i) + ' ' + str(j))try:time.sleep(2)url = 'http://m.maoyan.com/mmdb/comments/movie/1212592.json?_v_=yes&offset=' + str(j)html = requests.get(url=url, cookies=cookie, headers=headers).contentdata = json.loads(html.decode('utf-8'))['cmts']for item in data:tomato = tomato.append({'data': item['time'].split(' ')[0],'city': item['cityName'],'score': item['score'],'comment': item['content'],'nick': item['nick']}, ignore_index=True)tomato.to_excel('西虹市首富.xlsx', index=False)except:continue# 可以直接读取已经爬取的数据进行分析
tomato_com = pd.read_excel('西虹市首富.xlsx')
grouped = tomato_com.groupby(['city'])
grouped_pct = grouped['score']# 全国热力图
city_com = grouped_pct.agg(['mean', 'count'])
city_com.reset_index(inplace=True)
city_com['mean'] = round(city_com['mean'], 2)
data = [(city_com['city'][i], city_com['count'][i]) for i in range(0, city_com.shape[0])]
geo = Geo('《西虹市首富》全国热力图', title_color="#fff",title_pos="center", width=1200, height=600, background_color='#404a59')
attr, value = geo.cast(data)
geo.add("", attr, value, type="heatmap", visual_range=[0, 200],visual_text_color="#fff", symbol_size=10, is_visualmap=True,is_roam=False)
geo.render('西虹市首富.html')# 主要城市评论数与评分
city_main = city_com.sort_values('count', ascending=False)[0:20]
attr = city_main['city']
v1 = city_main['count']
v2 = city_main['mean']
line = Line("主要城市评分")
line.add("城市", attr, v2, is_stack=True, xaxis_rotate=30, yaxis_min=4.2,mark_point=['min', 'max'], xaxis_interval=0, line_color='lightblue',line_width=4, mark_point_textcolor='black', mark_point_color='lightblue',is_splitline_show=False)
bar = Bar("主要城市评论数")
bar.add("城市", attr, v1, is_stack=True, xaxis_rotate=30, yaxis_min=4.2,xaxis_interval=0, is_splitline_show=False)
overlap = Overlap()
overlap.add(bar)
overlap.add(line, yaxis_index=1, is_add_yaxis=True)
overlap.render('主要城市评论数_平均分.html')# 主要城市评分全国分布
city_score_area = city_com.sort_values('count', ascending=False)[0:30]
city_score_area.reset_index(inplace=True)
data = [(city_score_area['city'][i], city_score_area['mean'][i]) for i in range(0, city_score_area.shape[0])]
geo = Geo('《西虹市首富》全国主要城市打分图', title_color="#fff", title_pos="center",width=1200, height=600, background_color='#404a59')
attr, value = geo.cast(data)
geo.add("", attr, value, visual_range=[4.4, 4.8],visual_text_color="#fff", symbol_size=15, is_visualmap=True, is_roam=False)
geo.render('西虹市首富全国主要城市打分图.html')# 主要城市评分降序
city_score = city_main.sort_values('mean', ascending=False)[0:20]
attr = city_score['city']
v1 = city_score['mean']
line = Line("主要城市评分")
line.add("城市", attr, v1, is_stack=True, xaxis_rotate=30, yaxis_min=4.2, mark_point=['min', 'max'], xaxis_interval=0,line_color='lightblue', line_width=4, mark_point_textcolor='black',mark_point_color='lightblue', is_splitline_show=False)
line.render('主要城市评分.html')# 绘制词云
tomato_str = ' '.join(tomato_com['comment'])
words_list = []
word_generator = jieba.cut_for_search(tomato_str)
for word in word_generator:words_list.append(word)
words_list = [k for k in words_list if len(k)>1]
back_color = imread('西红柿.jpg')
wc = WordCloud(background_color='white',max_words=200,mask=back_color,max_font_size=300,font_path="C:/Windows/Fonts/SimHei.ttf",random_state=42,)
tomato_count = Counter(words_list)
wc.generate_from_frequencies(tomato_count)
image_colors = ImageColorGenerator(back_color)
plt.figure()
plt.imshow(wc.recolor(color_func=image_colors))
plt.axis('off')
plt.savefig('wordcloud.png', dpi=200)
plt.show()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于【Python 3 爬虫学习笔记】使用Python3 爬取猫眼《西虹市首富》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/691074

相关文章

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright