向量搜索查询faiss、annoy

2024-02-08 09:36
文章标签 查询 搜索 向量 faiss annoy

本文主要是介绍向量搜索查询faiss、annoy,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先介绍annoy :
转发空间:https://download.csdn.net/blog/column/10872374/114665212

Annoy是高维空间求近似最近邻的一个开源库。

Annoy构建一棵二叉树,查询时间为O(logn)。

Annoy通过随机挑选两个点,并使用垂直于这个点的等距离超平面将集合划分为两部分。

如图所示,图中灰色线是连接两个点,超平面是加粗的黑线。按照这个方法在每个子集上迭代进行划分。
在这里插入图片描述

依此类推,直到每个集合最多剩余k个点,下图是一个k = 10 的情况。

在这里插入图片描述

在这里插入图片描述

n_trees在构建时提供,并影响构建时间和索引大小。 较大的值将给出更准确的结果,但更大的索引。

search_k在运行时提供,并影响搜索性能。 较大的值将给出更准确的结果,但将需要更长的时间返回。

代码实现:

pip install annoy == 1.17.0 -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host pypi.tuna.tsinghua.edu.cn

from tqdm import tqdm
import pandas as pd
import time
import numpy as np
from annoy import AnnoyIndex
from sentence_transformers import SentenceTransformer, InputExample
from sentence_transformers import models, losses
from torch.utils.data import DataLoader
from sentence_transformers import SentenceTransformer, util
from sentence_transformers import SentenceTransformer, SentencesDataset, InputExample, evaluation, losses, models
from torch.utils.data import DataLoader
model = SentenceTransformer(r'327_6epoch_64batchdjwSaveModel/djwSaveModel')
emb1 = model.encode("美赞臣安婴儿A+亲舒婴儿奶粉1段850克0-12个月宝宝")
print(emb1.shape)
emb2 = model.encode("美赞臣亲舒一段领券满减")
emb3 = model.encode("真手表打火机带手电筒真车钥匙电子手表打火机充电防风送男友潮")
cos_sim = util.pytorch_cos_sim(emb1, emb2)
cos_sim1 = util.pytorch_cos_sim(emb3, emb2)
print("Cosine-Similarity:", cos_sim,cos_sim1)
corpus_data = pd.read_csv("corpus.tsv",sep="\t",header=None,names=['doc_id','title'])#读取csv文件
corpus_title_data=corpus_data['title'].values
qrels_train_data = pd.read_csv("qrels.train.tsv",sep="\t",header=None,names=['query_id','doc_id'])#读取csv文件
dev_id_query_data =[]
dev_querytxt_data=[]
with open("dev.query.txt","r",encoding='utf-8') as f:lines=f.readlines()for line in lines:dev_id_query_data.append(line.split("\n")[0].split("\t"))dev_querytxt_data.append(line.split("\n")[0].split("\t")[1])
print(len(dev_querytxt_data))
print(dev_querytxt_data[0:10])
f=128
t = AnnoyIndex(f, 'angular')  # Length of item vector that will be indexed
for index_i, i in tqdm(enumerate(dev_querytxt_data)):  # len 是1000embi = model.encode(i)t.add_item(index_i, embi)# if index_i==100:break
for index_j, j in tqdm(enumerate(corpus_title_data)):  # 1001500embj = model.encode(j)t.add_item(index_j + 1000, embj)# if index_j == 100: break
t.build(500)
t.save('327_6epoch_64batchdjwSaveModel_embeedding.ann')

两个超参数需要考虑: 树的数量n_trees和搜索过程中检查的节点数量search_k

基本上,建议在可用负载量的情况下尽可能大地设置n_trees,并且考虑到查询的时间限制,建议将search_k设置为尽可能大。

n_trees: 在构建期间提供,影响构建时间和索引大小。值越大,结果越准确,但索引越大。

search_k: 在运行时提供,并影响搜索性能。值越大,结果越准确,但返回的时间越长。如果不提供,就是n_trees * n, n是最近邻的个数

u = AnnoyIndex(f, 'angular')
u.load('ceshi_embeedding.ann')
for i in range(100):temp=u.get_nns_by_item(i,4)print(dev_querytxt_data[i])for idx in temp[1:]:print(corpus_title_data[idx-1000])print("------------------------------------------------------------")Facebook: 亿级向量相似度检索库Faiss原理
Faiss的核心原理其实就两个部分:
Product Quantizer, 简称PQ.
Inverted File System, 简称IVF.

2 Product Quantizer

在这里插入图片描述

在做PQ之前,首先需要指定一个参数M,这个M就是指定向量要被切分成多少段,在上图中M=4,所以向量库的每一个向量就被切分成了4段,然后把所有向量的第一段取出来做Clustering得到256个簇心(256是一个作者拍的经验值);再把所有向量的第二段取出来做Clustering得到256个簇心,直至对所有向量的第N段做完Clustering,从而最终得到了256*M个簇心。

做完Cluster,就开始对所有向量做Assign操作。这里的Assign就是把原来的N维的向量映射到M个数字,以N=128,M=4为例,首先把向量切成四段,然后对于每一段向量,都可以找到对应的最近的簇心 ID,4段向量就对应了4个簇心 ID,一个128维的向量就变成了一个由4个ID组成的向量,这样就可以完成了Assign操作的过程 – 现在,128维向量变成了4维,每个位置都只能取0~127,这就完成了向量的压缩。

完成了PQ的Pre-train,就可以看看如何基于PQ做向量检索了
在这里插入图片描述

同样是以N=128,M=4为例,对于每一个查询向量,以相同的方法把128维分成4段32维向量,然后计算每一段向量与之前预训练好的簇心的距离,得到一个4*256的表。然后就可以开始计算查询向量与库里面的向量的距离。此时,库的向量已经被量化成M个簇心 ID,而查询向量的M段子向量与各自的256个簇心距离已经预计算好了,所以在计算两个向量的时候只用查M次表,比如的库里的某个向量被量化成了[124, 56, 132, 222], 那么首先查表得到查询向量第一段子向量与其ID为124的簇心的距离,然后再查表得到查询向量第二段子向量与其ID为56的簇心的距离…最后就可以得到四个距离d1、d2、d3、d4,查询向量跟库里向量的距离d = d1+d2+d3+d4。所以在提出的例子里面,使用PQ只用4×256次128/4维向量距离计算加上4xN次查表,而最原始的暴力计算则有N次128维向量距离计算,很显然随着向量个数N的增加,后者相较于前者会越来越耗时。

2 Inverted File System
要想减少需要计算的目标向量的个数,做法就是直接对库里所有向量做KMeans Clustering,假设簇心个数为1024。那么每来一个query向量,首先计算其与1024个粗聚类簇心的距离,然后选择距离最近的top N个簇,只计算查询向量与这几个簇底下的向量的距离,计算距离的方法就是前面说的PQ。Faiss具体实现有一个小细节,就是在计算查询向量和一个簇底下的向量的距离的时候,所有向量都会被转化成与簇心的残差,这应该就是类似于归一化的操作,使得后面用PQ计算距离更准确一点。使用了IVF过后,需要计算距离的向量个数就少了几个数量级,最终向量检索就变成一个很快的操作。

import faissnlist = 100
m = 8 ##每个向量分8段
k = 4 ##求4-近邻
quantizer = faiss.IndexFlatL2(d)    # 内部的索引方式依然不变
index = faiss.IndexIVFPQ(quantizer, d, nlist, m, 8) # 每个向量都被编码为8个字节大小
index.train(xb)
index.add(xb)
index.nprobe = 10                
D, I = index.search(xq, k)          # 检索
print(I[-5:])

这篇关于向量搜索查询faiss、annoy的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/690616

相关文章

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

MYSQL查询结果实现发送给客户端

《MYSQL查询结果实现发送给客户端》:本文主要介绍MYSQL查询结果实现发送给客户端方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql取数据和发数据的流程(边读边发)Sending to clientSending DataLRU(Least Rec

MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)

《MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)》掌握多表联查(INNERJOIN,LEFTJOIN,RIGHTJOIN,FULLJOIN)和子查询(标量、列、行、表子查询、相关/非相关、... 目录第一部分:多表联查 (JOIN Operations)1. 连接的类型 (JOIN Types)

python编写朋克风格的天气查询程序

《python编写朋克风格的天气查询程序》这篇文章主要为大家详细介绍了一个基于Python的桌面应用程序,使用了tkinter库来创建图形用户界面并通过requests库调用Open-MeteoAPI... 目录工具介绍工具使用说明python脚本内容如何运行脚本工具介绍这个天气查询工具是一个基于 Pyt

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

在Java中基于Geotools对PostGIS数据库的空间查询实践教程

《在Java中基于Geotools对PostGIS数据库的空间查询实践教程》本文将深入探讨这一实践,从连接配置到复杂空间查询操作,包括点查询、区域范围查询以及空间关系判断等,全方位展示如何在Java环... 目录前言一、相关技术背景介绍1、评价对象AOI2、数据处理流程二、对AOI空间范围查询实践1、空间查

MySQL基本查询示例总结

《MySQL基本查询示例总结》:本文主要介绍MySQL基本查询示例总结,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Create插入替换Retrieve(读取)select(确定列)where条件(确定行)null查询order by语句li