洛谷:P1219 [USACO1.5] 八皇后 Checker Challenge(dfs深度优先遍历求解)

本文主要是介绍洛谷:P1219 [USACO1.5] 八皇后 Checker Challenge(dfs深度优先遍历求解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

一个如下的 6×66×6 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。

上面的布局可以用序列 2 4 6 1 3 52 4 6 1 3 5 来描述,第 i 个数字表示在第 i 行的相应位置有一个棋子,如下:

行号 1 2 3 4 5 61 2 3 4 5 6

列号 2 4 6 1 3 52 4 6 1 3 5

这只是棋子放置的一个解。请编一个程序找出所有棋子放置的解。
并把它们以上面的序列方法输出,解按字典顺序排列。
请输出前 33 个解。最后一行是解的总个数。

输入格式

一行一个正整数 n,表示棋盘是 n×n 大小的。

输出格式

前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。

输入输出样例

输入 

6

输出

2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4

说明/提示

【数据范围】
对于 100%的数据,6≤n≤13。

解题思路:

从每一行开始,遍历一这行的所有元素,如果这一行的列,正对角,反对角都没有皇后,就在这个位置放入一个皇后,然后继续向下一行进行搜索。

对角坐标如下图:

(蓝色为正对角,绿色为反对角,

故正对角线的坐标为:当前行+当前列,

反对角坐标为:n-当前行+当前列。

代码如下:

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 20;
bool y[N], dg[N], udg[N]; //分别用于记录当前元素的这一列,正对角,反对角是否有元素
int n, ans;
int e[N][N];
void dfs(int u)  //深度优先遍历
{if (u == n) //当遍历到最后一行时结束{//如果成功搜索到最后一行,就说明已经找到了一个方案,就把这个方案输出if (ans < 3) //只输出3次结果{for (int i = 0; i < n; i++){for (int j = 0; j < n; j++){if (e[i][j] == 1) cout << j + 1 << " ";}}cout << endl;}ans++;  //记录一共几条结果满足条件}for (int i = 0; i < n; i++){//遍历这一行当中得元素,如果这一列以及两个对角都没有皇后,就在这个坐标放入一个皇后if (!y[i] && !dg[u + i] && !udg[n - u + i]){e[u][i] = 1;y[i] = dg[u + i] = udg[n - u + i] = true;dfs(u + 1);//放完后继续向下一行搜索//搜索完之后回溯要把数据还原y[i] = dg[u + i] = udg[n - u + i] = false;e[u][i] = 0;}}
}
int main()
{cin >> n;dfs(0);cout << ans << endl;return 0;
}

模板题,可以看看n皇后dfs求解

n皇后问题(DFS)

算法小白的刷题日记。

这篇关于洛谷:P1219 [USACO1.5] 八皇后 Checker Challenge(dfs深度优先遍历求解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/689790

相关文章

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

python进行while遍历的常见错误解析

《python进行while遍历的常见错误解析》在Python中选择合适的遍历方式需要综合考虑可读性、性能和具体需求,本文就来和大家讲解一下python中while遍历常见错误以及所有遍历方法的优缺点... 目录一、超出数组范围问题分析错误复现解决方法关键区别二、continue使用问题分析正确写法关键点三

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

Java遍历HashMap的6种常见方式

《Java遍历HashMap的6种常见方式》这篇文章主要给大家介绍了关于Java遍历HashMap的6种常见方式,方法包括使用keySet()、entrySet()、forEach()、迭代器以及分别... 目录1,使用 keySet() 遍历键,再通过键获取值2,使用 entrySet() 遍历键值对3,

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步