洛谷:P1219 [USACO1.5] 八皇后 Checker Challenge(dfs深度优先遍历求解)

本文主要是介绍洛谷:P1219 [USACO1.5] 八皇后 Checker Challenge(dfs深度优先遍历求解),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

一个如下的 6×66×6 的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行、每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子。

上面的布局可以用序列 2 4 6 1 3 52 4 6 1 3 5 来描述,第 i 个数字表示在第 i 行的相应位置有一个棋子,如下:

行号 1 2 3 4 5 61 2 3 4 5 6

列号 2 4 6 1 3 52 4 6 1 3 5

这只是棋子放置的一个解。请编一个程序找出所有棋子放置的解。
并把它们以上面的序列方法输出,解按字典顺序排列。
请输出前 33 个解。最后一行是解的总个数。

输入格式

一行一个正整数 n,表示棋盘是 n×n 大小的。

输出格式

前三行为前三个解,每个解的两个数字之间用一个空格隔开。第四行只有一个数字,表示解的总数。

输入输出样例

输入 

6

输出

2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4

说明/提示

【数据范围】
对于 100%的数据,6≤n≤13。

解题思路:

从每一行开始,遍历一这行的所有元素,如果这一行的列,正对角,反对角都没有皇后,就在这个位置放入一个皇后,然后继续向下一行进行搜索。

对角坐标如下图:

(蓝色为正对角,绿色为反对角,

故正对角线的坐标为:当前行+当前列,

反对角坐标为:n-当前行+当前列。

代码如下:

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 20;
bool y[N], dg[N], udg[N]; //分别用于记录当前元素的这一列,正对角,反对角是否有元素
int n, ans;
int e[N][N];
void dfs(int u)  //深度优先遍历
{if (u == n) //当遍历到最后一行时结束{//如果成功搜索到最后一行,就说明已经找到了一个方案,就把这个方案输出if (ans < 3) //只输出3次结果{for (int i = 0; i < n; i++){for (int j = 0; j < n; j++){if (e[i][j] == 1) cout << j + 1 << " ";}}cout << endl;}ans++;  //记录一共几条结果满足条件}for (int i = 0; i < n; i++){//遍历这一行当中得元素,如果这一列以及两个对角都没有皇后,就在这个坐标放入一个皇后if (!y[i] && !dg[u + i] && !udg[n - u + i]){e[u][i] = 1;y[i] = dg[u + i] = udg[n - u + i] = true;dfs(u + 1);//放完后继续向下一行搜索//搜索完之后回溯要把数据还原y[i] = dg[u + i] = udg[n - u + i] = false;e[u][i] = 0;}}
}
int main()
{cin >> n;dfs(0);cout << ans << endl;return 0;
}

模板题,可以看看n皇后dfs求解

n皇后问题(DFS)

算法小白的刷题日记。

这篇关于洛谷:P1219 [USACO1.5] 八皇后 Checker Challenge(dfs深度优先遍历求解)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/689790

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1