支持向量回归_基于支持向量回归的区域化流量历时曲线分析

2024-02-07 20:50

本文主要是介绍支持向量回归_基于支持向量回归的区域化流量历时曲线分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

6034370397c9f04b3627cc53eec7d806.png 04d9d147ca990c33570f826194ad1b16.png

题目:

Regional Analysis of Flow Duration Curves through Support Vector Regression

作者:

Mehdi Vafakhah1, Saeid Khosrobeigi1

单位:

Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Noor 46417-76489, Iran

刊物/年份:
Water Resources Management / 2019

04d9d147ca990c33570f826194ad1b16.png

文案:史虹键

排版:史虹键

校核:丁光旭

04d9d147ca990c33570f826194ad1b16.png

基于支持向量回归的区域化流量历时曲线分析

afdce5c3e38433b79c518aee367d3257.png

研究背景

流量历时曲线(FDC)显示了特定时间段内日流量大小和频率之间的关系,被广泛应用于水资源管理。然而世界上大量的流域都缺少观测资料,这种情况导致需要使用区域化方法来估计未测量河流流域的FDC。人工智能方法作为资料较少流域FDC预测的有效技术被广泛应用,目前还没有研究使用SVR(支持向量回归)进行区域化FDC分析。因此,有必要对SVR在这一领域的能力进行评估。

研究目的

文章的研究主要有两个目的:

a .利用SVR(支持向量回归)、ANN(人工神经网络)和NLR(非线性回归)方法建立区域化FDC模型;

b .比较这些方法对于区域化FDC分析的性能。

研究方法

研究选取伊朗中部纳马克湖流域的33个站点,主要数据是从伊朗水资源管理公司获得的逐日流量数据,所选河流没有明显的人为干扰(图1)。

b60e8932d194833747898f2c03259ffa.png

图1、研究地区

研究方法可以简单概括为如下4步:

(1)计算每个站点的年FDC;

(2)将每年的逐日流量升序排列,绘制每个有序观测值与其相应的超过概率的对比图;

(3)按照相对历时百分比将数据划分为5组,分别为Q2/Q10/Q20/Q50/Q90,例如90代表相对历时百分比为90%;

(4)建立SVR,ANN,NLR模型,比较对于区域化FDC分析的性能。

主要研究结果

表1 、NLR模型测试集和验证集的 对比结果 5c4646f3a782761208b744fefa5005a1.png

表2、ANN模型测试集和验证集的对比结果

69cd0cfa1ac6996822ed25c4b37d6221.png

表3、SVR模型测试集和验证集的对比结果

1e2f1a60be00ca3bae07bb552bc1e4ae.png

如表1、2、3所示,在5组数据中,在R2值方面SVR模型相较于ANN和NLR具有更好的结果;另一方面,除Q20(NSE=0.54)之外,SVR模型的NSE值均在0.75 - 0.85之间 ,SVR总体质量高于ANN模型;NLR模型的NSE值明显低于SVR和ANN模型;SVR模型在所有分组中性能表现均较好,并且RBF(Radial Basis)核函数更能反映实际情况。

5bd394a5cf30aa9ce5bda32224c99366.png

图2、NLR,ANN和SVR在测试期内为8所水文站提供的区域化FDC

表4、图2中使用的8所水文站编号及名称

925916d182ac3e003e84e62b4c0ef7a3.png

如图2所示,NLR高估了6所水文站的FDC;ANN高估了4所水文站的FDC;而SVR中仅有2所水文站有一定偏差,其余6所相对重合。

研究结论

(1)SVR模型在区域化FDC分析中比ANN和RNN具有更好的性能;

(2)SVR的RBF核函数更能反映实际情况。

04d9d147ca990c33570f826194ad1b16.png

原文链接

http://dx.doi.org/10.1029/2018WR024620

a28d4d70b7ce07e5338228f7950c6d30.png

你在看这篇文章吗

这篇关于支持向量回归_基于支持向量回归的区域化流量历时曲线分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/688901

相关文章

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)

《k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)》本文记录在K8s上运行的MySQL/MariaDB备份方案,通过工具容器执行mysqldump,结合定时任务实... 目录前言一、获取需要备份的数据库的信息二、备份步骤1.准备工作(X86)1.准备工作(arm)2.手

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

华为鸿蒙HarmonyOS 5.1官宣7月开启升级! 首批支持名单公布

《华为鸿蒙HarmonyOS5.1官宣7月开启升级!首批支持名单公布》在刚刚结束的华为Pura80系列及全场景新品发布会上,除了众多新品的发布,还有一个消息也点燃了所有鸿蒙用户的期待,那就是Ha... 在今日的华为 Pura 80 系列及全场景新品发布会上,华为宣布鸿蒙 HarmonyOS 5.1 将于 7

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis