【Python基础】案例分析:泰坦尼克分析

2024-02-07 19:36

本文主要是介绍【Python基础】案例分析:泰坦尼克分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

泰坦尼克分析

1 目的:

  • 熟悉数据集
  • 熟悉seaborn各种操作作
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
home = r'data'
df = sns.load_dataset('titanic', data_home=home)
df.head()
survivedpclasssexagesibspparchfareembarkedclasswhoadult_maledeckembark_townalivealone
003male22.0107.2500SThirdmanTrueNaNSouthamptonnoFalse
111female38.01071.2833CFirstwomanFalseCCherbourgyesFalse
213female26.0007.9250SThirdwomanFalseNaNSouthamptonyesTrue
311female35.01053.1000SFirstwomanFalseCSouthamptonyesFalse
403male35.0008.0500SThirdmanTrueNaNSouthamptonnoTrue

2 数据整理

  • 缺省值统计
  • 缺省值处理:删除或补齐
  • 数据二次处理

2.1 统计缺省值计缺省值

df.isnull().sum()
survived         0
pclass           0
sex              0
age            177
sibsp            0
parch            0
fare             0
embarked         2
class            0
who              0
adult_male       0
deck           688
embark_town      2
alive            0
alone            0
dtype: int64

2.2 删除与填充

  • 删除deck列
pdata = df.drop('deck', axis=1)
pdata.head()
survivedpclasssexagesibspparchfareembarkedclasswhoadult_maleembark_townalivealone
003male22.0107.2500SThirdmanTrueSouthamptonnoFalse
111female38.01071.2833CFirstwomanFalseCherbourgyesFalse
213female26.0007.9250SThirdwomanFalseSouthamptonyesTrue
311female35.01053.1000SFirstwomanFalseSouthamptonyesFalse
403male35.0008.0500SThirdmanTrueSouthamptonnoTrue
  • 年龄使用均值填充
#填充均值
pdata = pdata.fillna(pdata.mean(numeric_only=True)) #Notes:添加numeric_only=True只对数字做处理
#年龄分类
pdata['age_level'] = pd.cut(pdata.age,bins = [0,18,60,100], labels=['child','mid', 'old'])
pdata.head()
survivedpclasssexagesibspparchfareembarkedclasswhoadult_maleembark_townalivealoneage_level
003male22.0107.2500SThirdmanTrueSouthamptonnoFalsemid
111female38.01071.2833CFirstwomanFalseCherbourgyesFalsemid
213female26.0007.9250SThirdwomanFalseSouthamptonyesTruemid
311female35.01053.1000SFirstwomanFalseSouthamptonyesFalsemid
403male35.0008.0500SThirdmanTrueSouthamptonnoTruemid

3 数据统计

3.1 基础数据统计

  • 年龄分布
  • 船舱人数分布
  • 男女分布
  • 团队人数分布

年龄较分散,使用直方图进行展示方图进行展示

sns.distplot(pdata.age)
 UserWarning: `distplot` is a deprecated function and will be removed in seaborn v0.14.0.Please adapt your code to use either `displot` (a figure-level function with
similar flexibility) or `histplot` (an axes-level function for histograms).For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751sns.distplot(pdata.age)<AxesSubplot: xlabel='age', ylabel='Density'>


sns.boxplot(pdata.age)
<AxesSubplot: ylabel='age'>


船舱人数,男女人数,团队人数(1个人,两个人,三个人对应的数量)使用柱状图进行展示

cols = ['sex', 'pclass', 'sibsp']
lens = len(cols)
plt.figure(figsize=(14,3))
for index, col in enumerate(cols):plt.subplot(1, lens,index+1)ax = sns.countplot(x=col, data=pdata)ax.set_title(col)


3.2 获救数据

  • 获救人数与遇难人数
  • 根据性别,统计获救与遇难人数
  • 根据年龄段,统计获救与遇难人数
  • 根据年龄段,性别,统计获救与遇难人数
  • 根据年龄段,性别,船舱,统计获救与遇难人数
sns.countplot(x='survived', data=pdata)
<AxesSubplot: xlabel='survived', ylabel='count'>


  • 根据性别进行分类
sns.countplot(x='sex', data=pdata, hue='survived')
<AxesSubplot: xlabel='sex', ylabel='count'>


  • 年龄与获救关系
sns.countplot(x='age_level', data=pdata, hue='survived')
<AxesSubplot: xlabel='age_level', ylabel='count'>


  • 性别,获救,年龄段,船舱获救统计
sns.catplot(x='sex', hue='survived', data=pdata, kind='count', col='age_level', row='pclass')
<seaborn.axisgrid.FacetGrid at 0x1d4d126dc10>


这篇关于【Python基础】案例分析:泰坦尼克分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/688702

相关文章

Python实现自动化删除Word文档超链接的实用技巧

《Python实现自动化删除Word文档超链接的实用技巧》在日常工作中,我们经常需要处理各种Word文档,本文将深入探讨如何利用Python,特别是借助一个功能强大的库,高效移除Word文档中的超链接... 目录为什么需要移除Word文档超链接准备工作:环境搭建与库安装核心实现:使用python移除超链接的

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

Python Excel 通用筛选函数的实现

《PythonExcel通用筛选函数的实现》本文主要介绍了PythonExcel通用筛选函数的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录案例目的示例数据假定数据来源是字典优化:通用CSV数据处理函数使用说明使用示例注意事项案例目的第一

Python实现中文大写金额转阿拉伯数字

《Python实现中文大写金额转阿拉伯数字》在财务票据中,中文大写金额被广泛使用以防止篡改,但在数据处理时,我们需要将其转换为阿拉伯数字形式,下面我们就来看看如何使用Python实现这一转换吧... 目录一、核心思路拆解二、中文数字解析实现三、大单位分割策略四、元角分综合处理五、测试验证六、全部代码在财务票

使用python制作一款文件粉碎工具

《使用python制作一款文件粉碎工具》这篇文章主要为大家详细介绍了如何使用python制作一款文件粉碎工具,能够有效粉碎密码文件和机密Excel表格等,感兴趣的小伙伴可以了解一下... 文件粉碎工具:适用于粉碎密码文件和机密的escel表格等等,主要作用就是防止 别人用数据恢复大师把你刚删除的机密的文件恢

在.NET项目中嵌入Python代码的实践指南

《在.NET项目中嵌入Python代码的实践指南》在现代开发中,.NET与Python的协作需求日益增长,从机器学习模型集成到科学计算,从脚本自动化到数据分析,然而,传统的解决方案(如HTTPAPI或... 目录一、CSnakes vs python.NET:为何选择 CSnakes?二、环境准备:从 Py

python中getsizeof和asizeof的区别小结

《python中getsizeof和asizeof的区别小结》本文详细的介绍了getsizeof和asizeof的区别,这两个函数都用于获取对象的内存占用大小,它们来自不同的库,下面就来详细的介绍一下... 目录sys.getsizeof (python 内置)pympler.asizeof.asizeof

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与