Transformer实战-系列教程10:SwinTransformer 源码解读3

2024-02-07 17:44

本文主要是介绍Transformer实战-系列教程10:SwinTransformer 源码解读3,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🚩🚩🚩Transformer实战-系列教程总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Pycharm中进行
本篇文章配套的代码资源已经上传
点我下载源码

5、SwinTransformerBlock类

class SwinTransformerBlock(nn.Module):def extra_repr(self) -> str:return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"

5.1 构造函数

SwinTransformerBlock 是 Swin Transformer 模型中的一个基本构建块。它结合了自注意力机制和多层感知机(MLP),并通过窗口划分和可选的窗口位移来实现局部注意力

def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,act_layer=nn.GELU, norm_layer=nn.LayerNorm):super().__init__()self.dim = dimself.input_resolution = input_resolutionself.num_heads = num_headsself.window_size = window_sizeself.shift_size = shift_sizeself.mlp_ratio = mlp_ratioif min(self.input_resolution) <= self.window_size:self.shift_size = 0self.window_size = min(self.input_resolution)assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"self.norm1 = norm_layer(dim)self.attn = WindowAttention(dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()self.norm2 = norm_layer(dim)mlp_hidden_dim = int(dim * mlp_ratio)self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)if self.shift_size > 0:H, W = self.input_resolutionimg_mask = torch.zeros((1, H, W, 1))  # 1 H W 1h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size),slice(-self.shift_size, None))cnt = 0for h in h_slices:for w in w_slices:img_mask[:, h, w, :] = cntcnt += 1mask_windows = window_partition(img_mask, self.window_size)mask_windows = mask_windows.view(-1, self.window_size * self.window_size)attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))else:attn_mask = Noneself.register_buffer("attn_mask", attn_mask)
  1. dim:输入特征的通道数。
  2. input_resolution:输入特征的分辨率(高度和宽度)
  3. num_heads:自注意力头的数量
  4. window_size:窗口大小,决定了注意力机制的局部范围
  5. shift_size:窗口位移的大小,用于实现错位窗口多头自注意力(SW-MSA)
  6. mlp_ratio:MLP隐层大小与输入通道数的比率
  7. qkv_bias:QKV的偏置
  8. qk_scale:QKV的缩放因子
  9. drop:丢弃率
  10. drop_path:分别控制QKV的偏差、缩放因子、丢弃率、注意力丢弃率和随机深度率
  11. norm_layer:激活层和标准化层,默认分别为 GELU 和 LayerNorm
  12. WindowAttention:窗口注意力模块
  13. Mlp:一个包含全连接层、激活函数、Dropout的模块
  14. img_mask :图像掩码,用于生成错位窗口自注意力
  15. h_slicesw_slices:水平和垂直方向上的切片,用于划分图像掩码
  16. cnt :计数器,标记不同的窗口
  17. mask_windows :图像掩码划分为窗口,并将每个窗口的掩码重塑为一维向量
  18. window_partition
  19. attn_mask :注意力掩码,用于在自注意力计算中排除窗口外的位置
  20. register_buffer:注意力掩码注册为一个模型的缓冲区

5.2 前向传播

def forward(self, x):H, W = self.input_resolutionB, L, C = x.shapeassert L == H * W, "input feature has wrong size"shortcut = xx = self.norm1(x)x = x.view(B, H, W, C)if self.shift_size > 0:shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))else:shifted_x = xx_windows = window_partition(shifted_x, self.window_size)x_windows = x_windows.view(-1, self.window_size * self.window_size, C)attn_windows = self.attn(x_windows, mask=self.attn_mask)  # nW*B, window_size*window_size, Cattn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)shifted_x = window_reverse(attn_windows, self.window_size, H, W)  # B H' W' Cif self.shift_size > 0:x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))else:x = shifted_xx = x.view(B, H * W, C)x = shortcut + self.drop_path(x)x = x + self.drop_path(self.mlp(self.norm2(x)))return x
  1. 原始输入: torch.Size([4, 3136, 96]),输入的是一个长度为3136的序列,每个向量的维度为96,在
    被多次调用的时候,维度也发生了变化原始输入: torch.Size([4, 784, 192])、torch.Size([4, 196, 384])、torch.Size([4, 49, 768])
  2. H,W=[ 56,56],输入分辨率中的高度和宽度
  3. B, L, C=[ 4,3136,96],当前输入的维度,批次大小、序列长度和向量的维度
  4. norm1(x): torch.Size([4, 3136, 96]),经过一个层归一化,维度不变
  5. x.view(B, H, W, C): torch.Size([4, 56, 56, 96]),将序列重塑为(Batch_size,Height,Width,Channel)的形状
  6. shifted_x: torch.Size([4, 56, 56, 96]),位移操作后的x
  7. x_windows: torch.Size([256, 7, 7, 96]),将位移后的特征图划分为窗口
  8. x_windows: torch.Size([256, 49, 96]),将窗口重塑为一维向量,以便进行自注意力计算
  9. attn_windows: torch.Size([256, 7, 7, 96]),对每个窗口应用窗口注意力机制,考虑到可能的注意力掩码
  10. shifted_x: torch.Size([4, 56, 56, 96]),注意力操作后的窗口重塑回原始形状,并将它们合并回完整的特征图
  11. torch.Size([4, 56, 56, 96]),如果进行了循环位移,则执行逆向循环位移操作,以恢复原始特征图的位置
  12. torch.Size([4, 3136, 96]),特征图重塑回原始的[B, L, C]形状
  13. torch.Size([4, 3136, 96]),应用残差连接,并通过随机深度(如果设置了的话)
  14. torch.Size([4, 3136, 96]),应用第二个标准化层,然后是MLP,并再次应用随机深度,完成残差连接的最后一步。

这篇关于Transformer实战-系列教程10:SwinTransformer 源码解读3的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/688455

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边