OpenShift 4 - 在 OpenShift 上运行物体检测 AI/ML 应用

2024-02-07 12:52

本文主要是介绍OpenShift 4 - 在 OpenShift 上运行物体检测 AI/ML 应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《OpenShift / RHEL / DevSecOps 汇总目录》
说明:本文已经在 OpenShift 4.14 + RHODS 2.5.0 的环境中验证

说明:请先根据《OpenShift 4 - 部署 OpenShift AI 环境,运行 AI/ML 应用(视频)》一文完成 OpenShift AI 环境的安装。
注意:如无特殊说明,和 OpenShift AI 相关的 Blog 均无需 GPU。

文章目录

  • 运行和部署后端模型
    • 运行测试后端模型
    • 将后端模型部署为 REST 服务
  • 部署前端识别图片应用
  • 部署前端识别视频应用
    • Kafka
  • 参考

运行和部署后端模型

在 Jupyter Notebook 中我们先用本地图片测试一个预先训练好的机器学习模型,然后将该模型的功能封装为一个 REST 服务。在完成本地测后再将物体识别模块部署到 OpenShift 上。

运行测试后端模型

  1. 在 OpenShift AI 中启动 notebook server 环境,notebook 镜像使用 TensorFlow 2023.2 即可。
  2. 在 Jupyter Notebook 界面中导入 https://github.com/rh-aiservices-bu/object-detection-rest.git 仓库。
  3. 在 Launcher 中进入 Terminal,然后执行以下命令安装 Pillow。
(app-root) (app-root) pip install Pillow==9.5.0
Collecting Pillow==9.5.0Downloading Pillow-9.5.0-cp39-cp39-manylinux_2_28_x86_64.whl (3.4 MB)━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 3.4/3.4 MB 84.0 MB/s eta 0:00:00
Installing collected packages: PillowAttempting uninstall: PillowFound existing installation: Pillow 10.1.0Uninstalling Pillow-10.1.0:Successfully uninstalled Pillow-10.1.0
Successfully installed Pillow-9.5.0[notice] A new release of pip available: 22.2.2 -> 23.3.2
[notice] To update, run: pip install --upgrade pip
  1. 打开 1_explore.ipynb 文件,然后点击 Run > Run All Cells 菜单。
  2. 运行完成后会识别并标记出 twodogs.jpg 图片的 dog。
    在这里插入图片描述

将后端模型部署为 REST 服务

  1. 根据 Notebook 的说明依次运行 2_predict.ipynb、3_run_flask.ipynb、4_test_flask.ipynb。其中 3_run_flask.ipynb 会在 http://127.0.0.1:5000 提供运行物体识别的 REST 服务。
  2. 在 OpenShift 中创建 object-detect 项目。
  3. 在 OpenShift 的开发者视图中进入 “+添加” > "从 Github 导入”,在 Git Repo URL 中填入 https://github.com/rh-aiservices-bu/object-detection-rest.git。在按下图完成配置后点击 “创建”。
    在这里插入图片描述
  4. 部署完成后可以打开下图 object-detect-rest 路由的地址,将显示 {“status”:“ok”},说明 REST 服务正常运行。
    在这里插入图片描述
  5. 打开 4_test_flask.ipynb 文件,将 my_route 变量的内容改为上图的路由地址,然后再运行该文件并确认可以正常识别图片中的物体。

部署前端识别图片应用

  1. 再次使用 “从 Git 导入” 功能部署 https://github.com/rh-aiservices-bu/object-detection-app.git。
    其中需要在部署中增加一个环境变量 OBJECT_DETECTION_URL=http://object-detection-rest:8080/predictions
    在这里插入图片描述
  2. 完成部署后打开下图 object-detect-ui 路由的地址。
    在这里插入图片描述
  3. 用带有摄像头的电脑打开 object-detect-ui 路由的地址,然后可拍摄图片确认物体识别结果。
    在这里插入图片描述

部署前端识别视频应用

Kafka

安装 AMQ Streams Operator。
创建名为 object-detect 的 Kafka 实例。

apiVersion: kafka.strimzi.io/v1beta2
kind: KafkaTopic
metadata:name: imageslabels:strimzi.io/cluster: my-clusternamespace: object-detect
spec:config:retention.ms: 604800000segment.bytes: 1073741824partitions: 1replicas: 3
$ oc get kafkatopics -n object-detect
NAME                                                                                               CLUSTER         PARTITIONS   REPLICATION FACTOR   READY
consumer-offsets---84e7a678d08f4bd226872e5cdd4eb527fadc1c6a                                        object-detect   50           3                    True
images                                                                                             my-cluster      1            3
notebook-test                                                                                      my-cluster      1            3
objects                                                                                            my-cluster      1            3
strimzi-store-topic---effb8e3e057afce1ecf67c3f5d8e4e3ff177fc55                                     object-detect   1            3                    True
strimzi-topic-operator-kstreams-topic-store-changelog---b75e702040b99be8a9263134de3507fc0cc4017b   object-detect   1            3                    True

https://github.com/blues-man/object-detection-kafka-consumer

在这里插入图片描述
在这里插入图片描述

apiVersion: v1
kind: Secret
metadata:name: object-detection-kafkalabels:app: object-detectionapp.kubernetes.io/component: object-detectionapp.kubernetes.io/instance: object-detectionapp.kubernetes.io/part-of: object-detection
data:
stringData:KAFKA_BOOTSTRAP_SERVER: object-detect-kafka-brokers.object-detect.svc.cluster.local:8443KAFKA_TOPIC_IMAGES: imagesKAFKA_TOPIC_OBJECTS: objects

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

参考

https://redhat-scholars.github.io/rhods-od-workshop/rhods-od-workshop/index.html

这篇关于OpenShift 4 - 在 OpenShift 上运行物体检测 AI/ML 应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/687793

相关文章

CSS3 布局样式及其应用举例

《CSS3布局样式及其应用举例》CSS3的布局特性为前端开发者提供了无限可能,无论是Flexbox的一维布局还是Grid的二维布局,它们都能够帮助开发者以更清晰、简洁的方式实现复杂的网页布局,本文给... 目录深入探讨 css3 布局样式及其应用引言一、CSS布局的历史与发展1.1 早期布局的局限性1.2

Spring Boot项目打包和运行的操作方法

《SpringBoot项目打包和运行的操作方法》SpringBoot应用内嵌了Web服务器,所以基于SpringBoot开发的web应用也可以独立运行,无须部署到其他Web服务器中,下面以打包dem... 目录一、打包为JAR包并运行1.打包为可执行的 JAR 包2.运行 JAR 包二、打包为WAR包并运行

在React聊天应用中实现图片上传功能

《在React聊天应用中实现图片上传功能》在现代聊天应用中,除了文字和表情,图片分享也是一个重要的功能,本文将详细介绍如何在基于React的聊天应用中实现图片上传和预览功能,感兴趣的小伙伴跟着小编一起... 目录技术栈实现步骤1. 消息组件改造2. 图片预览组件3. 聊天输入组件改造功能特点使用说明注意事项

Redis中RedisSearch使用及应用场景

《Redis中RedisSearch使用及应用场景》RedisSearch是一个强大的全文搜索和索引模块,可以为Redis添加高效的搜索功能,下面就来介绍一下RedisSearch使用及应用场景,感兴... 目录1. RedisSearch的基本概念2. RedisSearch的核心功能(1) 创建索引(2

Python datetime 模块概述及应用场景

《Pythondatetime模块概述及应用场景》Python的datetime模块是标准库中用于处理日期和时间的核心模块,本文给大家介绍Pythondatetime模块概述及应用场景,感兴趣的朋... 目录一、python datetime 模块概述二、datetime 模块核心类解析三、日期时间格式化与

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Python如何精准判断某个进程是否在运行

《Python如何精准判断某个进程是否在运行》这篇文章主要为大家详细介绍了Python如何精准判断某个进程是否在运行,本文为大家整理了3种方法并进行了对比,有需要的小伙伴可以跟随小编一起学习一下... 目录一、为什么需要判断进程是否存在二、方法1:用psutil库(推荐)三、方法2:用os.system调用